\(\dfrac{3-x}{\left(x-1\right)\left(x-2\right)}+\dfrac{1+x}{\left(1-x\right)\left(x-2\right)}=\dfrac{3-x}{\left(x-1\right)\left(x-2\right)}-\dfrac{1+x}{\left(x-1\right)\left(x-2\right)}=3-x-\left(1+x\right)=3-x-1-x=2-2x\)
\(\dfrac{3-x}{\left(x-1\right)\left(x-2\right)}+\dfrac{1+x}{\left(1-x\right)\left(x-2\right)}=\dfrac{3-x}{\left(x-1\right)\left(x-2\right)}-\dfrac{1+x}{\left(x-1\right)\left(x-2\right)}=3-x-\left(1+x\right)=3-x-1-x=2-2x\)
Tính:
a) \(\dfrac{x^2}{\left(x-y\right)\left(x-z\right)}+\dfrac{y^2}{\left(y-z\right)\left(y-x\right)}+\dfrac{z^2}{\left(z-x\right)\left(z-y\right)}\)
b) \(\dfrac{x^2-yz}{\left(x+y\right)\left(x+z\right)}+\dfrac{y^2-zx}{\left(y+z\right)\left(y+x\right)}+\dfrac{z^2-xy}{\left(z+x\right)\left(z+y\right)}\)
c) \(\dfrac{1}{x\left(x-y\right)\left(x-z\right)}+\dfrac{1}{y\left(y-x\right)\left(y-z\right)}+\dfrac{1}{z\left(z-x\right)\left(z-y\right)}\)
d) \(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+...+\dfrac{1}{\left(x+99\right)\left(x+100\right)}\)
Giúp mình với!!! Mình cần gấp!!! 10 giờ sáng mai cần gấp nha !!!
\(\dfrac{y}{2x^2-xy}+\dfrac{4x}{y^2-2xy}\)
\(\dfrac{1}{x+2}+\dfrac{3}{x^2-4}+\dfrac{x-14}{\left(x^2+4x+4\right).\left(x-2\right)}\)
\(\dfrac{1}{x+2}+\dfrac{1}{\left(x+2\right).\left(4x+7\right)}\)
\(\dfrac{1}{x+3}+\dfrac{1}{\left(x+3\right).\left(x+2\right)}+\dfrac{1}{\left(x+2\right).\left(4x+7\right)}\)
Tính
\(A=\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+...+\dfrac{1}{\left(x+9\right)\left(x+10\right)}\)
Chứng minh đẳng thức:
a) \(\dfrac{y}{\left(x-y\right)\left(y-z\right)}+\dfrac{z}{\left(y-z\right)\left(z-x\right)}+\dfrac{x}{\left(z-x\right)\left(x-y\right)=0}\)
b) \(\dfrac{x^2}{\left(x-y\right)\left(y-z\right)}+\dfrac{y^2}{\left(y-z\right)\left(y-x\right)}+\dfrac{z^2}{\left(z-x\right)\left(z-y\right)=1}\)
c) \(\dfrac{1}{x\left(x-y\right)\left(x-z\right)}+\dfrac{1}{y\left(y-z\right)\left(y-x\right)}+\dfrac{1}{z\left(z-x\right)\left(z-y\right)}=\dfrac{1}{xyz}\)
Tìm a b c : \(\dfrac{a}{\left(x-1\right)\left(x+2\right)}+\dfrac{b}{\left(x+1\right)\left(x+2\right)}+\dfrac{c}{\left(x+2\right)}=\dfrac{4x^2+2x}{\left(x+2\right)\left(x^2-1\right)}\)
Làm các phép tính sau :
a) \(\dfrac{y}{2x^2-xy}+\dfrac{4x}{y^2-2xy}\)
b) \(\dfrac{1}{x+2}+\dfrac{3}{x^2-4}+\dfrac{x-14}{\left(x^2+4x+4\right)\left(x-2\right)}\)
c) \(\dfrac{1}{x+2}+\dfrac{1}{\left(x+2\right)\left(4x+7\right)}\)
d) \(\dfrac{1}{x+3}+\dfrac{1}{\left(x+3\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(4x+7\right)}\)
Cộng các phân thức :
a) \(\dfrac{1}{\left(x-y\right)\left(y-z\right)}+\dfrac{1}{\left(y-z\right)\left(z-x\right)}+\dfrac{1}{\left(z-x\right)\left(x-y\right)}\)
b) \(\dfrac{4}{\left(y-x\right)\left(z-x\right)}+\dfrac{3}{\left(y-x\right)\left(y-z\right)}+\dfrac{3}{\left(y-z\right)\left(x-z\right)}\)
c) \(\dfrac{1}{x\left(x-y\right)\left(x-z\right)}+\dfrac{1}{y\left(y-z\right)\left(y-x\right)}+\dfrac{1}{z\left(z-x\right)\left(z-y\right)}\)
\(\dfrac{a}{\left(x-1\right)\left(x+2\right)}\)+\(\dfrac{b}{\left(x+1\right)\left(x+2\right)}\)+\(\dfrac{c}{x+2}\)= \(\dfrac{4x^2+2x}{\left(x+2\right)\left(x^2+1\right)}\)
Tính
1. \(\dfrac{1}{\left(x-y\right)\left(y-z\right)}+\dfrac{1}{\left(y-z\right)\left(z-1\right)}+\dfrac{1}{\left(z-x\right)\left(x-y\right)}\)
2. \(\dfrac{x}{x-2y}+\dfrac{x}{x+2y}+\dfrac{4xy}{4y^2-x}\)