Tính:
M = \(\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\times\sqrt{2}+\sqrt{20}\)
N = \(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right):\dfrac{1}{\sqrt{5}-\sqrt{2}}\)
tính
1.\(\left(\sqrt{15}-2\sqrt{3}\right)^2+12\sqrt{5}\)
2.\(3\sqrt{2}\left(4-\sqrt{2}\right)+3\left(1-2\sqrt{2}\right)^2\)
3.\(\dfrac{1}{2}\left(\sqrt{6}+\sqrt{5}\right)^2-\dfrac{1}{4}\sqrt{120}-\sqrt{\dfrac{15}{2}}\)
4.\(\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)^2\)
5.\(\left(\sqrt{\sqrt{14}+\sqrt{5}}+\sqrt{\sqrt{14}-\sqrt{5}}\right)^2\)
6.\(\left(\sqrt{3}+1\right)^3-\left(\sqrt{3}-1\right)^3\)
7.\(\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-1\right)^3\)
8.\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)
9.\(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
cho p=
\(\left[\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\times\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\right]\div\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
a.rút gọn p
b.cho \(x\times y=16\), xác định để x, y có giá trị nhỏ nhất
lm nhanh giúp mk nhé
Rút gọn:
1) \(\dfrac{16-6\sqrt{7}}{\sqrt{7}-3}\)
2) \(\dfrac{\left(\sqrt{3}-\sqrt{2}\right)^2+4\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)
3) \(\dfrac{\left(\sqrt{3}+2\sqrt{5}\right)^2-8\sqrt{15}}{\sqrt{6}-2\sqrt{10}}\)
Giúp em với ạ. Help mee !!!
Tính
\(\dfrac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
\(\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{\sqrt{2+\sqrt{3}}}{2}-\dfrac{2}{\sqrt{6}}+\dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)
\(\dfrac{1+\dfrac{\sqrt{3}}{2}}{1+\sqrt{1+\dfrac{\sqrt{3}}{2}}}+\dfrac{1-\dfrac{\sqrt{3}}{2}}{1-\sqrt{1-\dfrac{\sqrt{3}}{2}}}\)
P=(\(\dfrac{2}{\sqrt{x}-1}-\dfrac{5}{x+\sqrt{x}-2}\))÷[\(1+\dfrac{3-x}{\left(\sqrt{x-1}\right)\times\left(\sqrt{x}+2\right)}\)]
rút gọn P
Rút gọn:
A=\(\left(\dfrac{x-\sqrt{x}+2}{x-\sqrt{x}-2}-\dfrac{x}{x-2\sqrt{x}}\right)\div\dfrac{1-\sqrt{x}}{2-\sqrt{x}}vớix>0,x\ne1\)
B=\(\left(\dfrac{x}{3+\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right)\div\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)
Lm nhanh giúp mk nhé!
Rút gọn pt
a, \(-\dfrac{2}{3}\sqrt{\dfrac{\left(a-b\right)^3.b^5}{c}.\dfrac{9}{4}\sqrt{\dfrac{c^3}{2\left(a-b\right)}}\sqrt{ }98b}\)
b, \(\left(\sqrt{ab}+2\sqrt{\dfrac{b}{a}}-\sqrt{\dfrac{a}{b}+\dfrac{1}{ab}}\right).\sqrt{ab}\)
c, \(\left(\sqrt{b}-3\sqrt{3}+5\sqrt{2}-\dfrac{1}{2}\sqrt{8}\right).2\sqrt{6}\)
d, \(\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\)
Bài : Thu gọn
1) \(\dfrac{3\sqrt{5}-5\sqrt{3}}{\sqrt{15}-3}\)
2) \(\dfrac{\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{3}}\)
3) \(\dfrac{7+4\sqrt{3}}{2+\sqrt{3}}\)
4) \(\dfrac{16-6\sqrt{7}}{\sqrt{7}-3}\)
5) \(\dfrac{\left(\sqrt{3}-\sqrt{2}\right)^2+4\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)
6) \(\dfrac{\left(\sqrt{3}+2\sqrt{5}\right)^2-8\sqrt{15}}{\sqrt{6-2\sqrt{10}}}\)