Do \(\dfrac{x}{2}=\dfrac{y}{3}\)=>3x=2y
<=>3009x=2006y thay vào biểu thức ta được:
\(\dfrac{2005x+2006y}{2005x-2006y}=\dfrac{2005x+3009x}{2005x-3009x}=\dfrac{5014x}{-1004x}=-\dfrac{2507}{502}\)
Do \(\dfrac{x}{2}=\dfrac{y}{3}\)=>3x=2y
<=>3009x=2006y thay vào biểu thức ta được:
\(\dfrac{2005x+2006y}{2005x-2006y}=\dfrac{2005x+3009x}{2005x-3009x}=\dfrac{5014x}{-1004x}=-\dfrac{2507}{502}\)
Cho 3 số hữu tỉ x, y, z thỏa mãn với xyz(3x + y + z)(3y + z + x)(3z + x + y) \(\neq\) 0 thỏa mãn điều kiện \(\dfrac{x}{y+z+3x}=\dfrac{y}{z+x+3y}=\dfrac{z}{x+y+3z}\). Tính giá trị biểu thức:
A = \(\left(2+\dfrac{y+z}{x}\right)\left(2+\dfrac{z+x}{y}\right)\left(2+\dfrac{x+y}{z}\right)\)
Câu 3.
Câu 4. (\(\dfrac{4}{9}\)) \(^5\) . (\(\dfrac{3}{7}\))\(^{10}\) viết dưới dạng lũy thừa là?
Câu 5. \(\dfrac{x}{5}\) = \(\dfrac{y}{3}\) và x-y = 2. Giá trị x + y =?
Câu 6. x\(^2\) = 2. Số các giá trị của x thỏa mãn là?
Câu 7.
Bài 1: Tính:
\(a,\left(0,25\right)^3.32\) \(b,\left(0,125\right)^3.512\) \(c,\dfrac{8^2.4^5}{2^{20}}\) \(d,\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}\)
Bài 2: Tìm giá trị nhỏ nhất của các biểu thức sau:
\(a,A=\left|x-\dfrac{3}{4}\right|\) \(b,B=1,5+\left|2-x\right|\) \(c,A=\left|2x-\dfrac{1}{3}\right|+107\) \(d,M=5\left|1-4x\right|-1\)
Bài 3: Tìm giá trị lớn nhất của biểu thức sau:
\(a,C=-\left|x-2\right|\) \(b,D=1-\left|2x-3\right|\) \(c,D=-\left|x+\dfrac{5}{2}\right|\)
(mn giải giúp mk với, thanks mn nhìu!)
1. Cho \(\dfrac{x}{3}=\dfrac{y}{4}và\dfrac{y}{5}=\dfrac{z}{6}.Tính\) giá trị biểu thúc A=\(\dfrac{2x+3y+4z}{3x+4y+5z}\)
Có bn nào giải đc câu này ko?
Tính giá trị của biểu thức:
\(\dfrac{2^{15}.9^4}{6^6.8^3}\)
Cho \(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\) Tính giá trị của biểu thức : \(\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)
1, Tính tổng S= \(\dfrac{1}{2}+\dfrac{3}{4}+\dfrac{7}{8}+\dfrac{15}{16}+\dfrac{31}{32}+\dfrac{63}{64}+\dfrac{127}{128}-6\)
2, Tìm x,y,z biết:
a) \(\dfrac{x}{8}=\dfrac{y}{3}=\dfrac{z}{10}\)và xy+yz+zx=1206
b) \(\dfrac{x}{4}=\dfrac{2y}{5}=\dfrac{5z}{6}\)và x2 - 3y2 + 2z2 = 325
3, Cho biểu thức M= \(\dfrac{5x+2y+z}{x+4y-3z}\)trong đó x,y,z tỉ lệ với các số 2,3,4. Tính giá trị của M.
4, Cho số a= \(\left(\dfrac{56}{55}-1,01\right)^{50}\).Chứng minh rằng nếu viết số a dưới dạng số thập phân thì số a sẽ có ít nhất là 99 chữ số 0 đầu tiên sau dấu phẩy.
5, Tìm các giá trị của x và y để:
a) Biểu thức A= \(\left(x-\dfrac{5}{6}\right)^2+\left(xy-\dfrac{1}{4}\right)^4-85\) đạt giá trị nhỏ nhất.
b) Biểu thức B= -5(3x+2)4 + [-(x+2y)2]5 +111 đạt giá trị lớn nhất.
Mong các bn giúp mình, cám ơn nhìu...!
Cho biểu thức \(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}=\dfrac{z+t}{x+y}+\dfrac{t+z}{z+y}\)
Tìm giá trị của P, biết rằng \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
Cho x+y+z+t và \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\). Chứng minh rằng biểu thức P=\(\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\) có giá trị nguyên.