\(\dfrac{1}{3}\sqrt{45}-\sqrt{20}+\sqrt{9+4\sqrt{5}}\)
= \(\dfrac{1}{3}.3.\sqrt{5}-2\sqrt{5}+\sqrt{\left(2+\sqrt{5}\right)^2}\)
= \(\sqrt{5}-2\sqrt{5}+2+\sqrt{5}=2\)
\(\dfrac{1}{3}\sqrt{45}-\sqrt{20}+\sqrt{9+4\sqrt{5}}=\dfrac{1}{3}\sqrt{9.5}-\sqrt{4.5}+\sqrt{2^2+2.2.\sqrt{5}+\left(\sqrt{5}\right)^2}\)
\(\dfrac{1}{3}.3\sqrt{5}-2\sqrt{5}+\sqrt{\left(2+\sqrt{5}\right)^2}=\sqrt{5}-2\sqrt{5}+\left|2+\sqrt{5}\right|\)
\(=\sqrt{5}-2\sqrt{5}+2+\sqrt{5}=2\)
`1/3sqrt{45}-sqrt{20}+sqrt{9+4sqrt5}`
`=1/3*3sqrt5-2sqrt5+sqrt{(sqrt5+2)^2}`
`=sqrt5-2sqrt5+sqrt5+2=2`