\(=\dfrac{1}{2\sqrt{2}}-3\sqrt{5}+2\sqrt{2}\\ =\dfrac{1-2\sqrt{2}.3\sqrt{5}+8}{2\sqrt{2}}=\dfrac{1-6\sqrt{10}+8}{2\sqrt{2}}=\dfrac{9-6\sqrt{10}}{2\sqrt{2}}=\dfrac{\sqrt{2}\left(9-6\sqrt{10}\right)}{4}\\ =\dfrac{9\sqrt{2}-12\sqrt{5}}{4}\)
\(=\dfrac{1}{2\sqrt{2}}-3\sqrt{5}+2\sqrt{2}\\ =\dfrac{1-2\sqrt{2}.3\sqrt{5}+8}{2\sqrt{2}}=\dfrac{1-6\sqrt{10}+8}{2\sqrt{2}}=\dfrac{9-6\sqrt{10}}{2\sqrt{2}}=\dfrac{\sqrt{2}\left(9-6\sqrt{10}\right)}{4}\\ =\dfrac{9\sqrt{2}-12\sqrt{5}}{4}\)
Thực hiến phép tính :
a, \(\dfrac{1}{3+\sqrt{2}}+\dfrac{1}{3-\sqrt{2}}\)
b, \(\dfrac{2}{3\sqrt{2}-4}-\dfrac{2}{3\sqrt{2}+4}\)
c, \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\)
d, \(\dfrac{3}{2\sqrt{2}-3\sqrt{3}}-\dfrac{3}{2\sqrt{2}+3\sqrt{3}}\)
e, \(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
g, \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\)
Bài 1 :tính giá trị của biểu thức
a) \(\left(\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{2}-1\right)\)
b) \(3\sqrt{50}-2\sqrt{75}-4\dfrac{\sqrt{54}}{\sqrt{3}}-3\sqrt{\dfrac{1}{3}}\)
c) \(\sqrt{\left(\sqrt{3}-3\right)^2}+\sqrt{4+2\sqrt{3}}\)
d) \(\sqrt{48-2\sqrt{135}}-\sqrt{45}+\sqrt{18}\)
e)\(\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}+\dfrac{6}{2-\sqrt{10}}-\dfrac{20}{\sqrt{10}}\)
Bài 2 :Tính:
a) \(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}\)
b) \(\left(2\sqrt{3}+4\right)\left(\sqrt{3}-2\right)\)
c) \(\sqrt{3+2\sqrt{2}}+\sqrt{\left(\sqrt{2}-2\right)^2}\)
d)\(\sqrt{4-\sqrt{15}}-\sqrt{4+\sqrt{15}}+\sqrt{6}\)
e)\(\left(\dfrac{5-\sqrt{5}}{\sqrt{5}}-2\right)\left(\dfrac{4}{1+\sqrt{5}}+4\right)\)
f) \(\dfrac{1}{5}\sqrt{50}-2\sqrt{96}-\dfrac{\sqrt{30}}{\sqrt{15}}+12\sqrt{\dfrac{1}{6}}\)
\(\dfrac{2}{\sqrt{5}-2}+\dfrac{2}{\sqrt{5}+2}\)
\(\dfrac{\sqrt{3}.\sqrt{5-2\sqrt{6}}}{\sqrt{3}-\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)
thực hiện phép tính:
A=\(\sqrt{9}-3\sqrt{\dfrac{50}{9}}+3\sqrt{8}-\sqrt[3]{27}\)
B=\(\sqrt{\left(2-\sqrt{3}\right)^2}+\dfrac{2}{\sqrt{3}-1}-6\sqrt{\dfrac{16}{3}}\)
Bài 1 Thực hiện các phép tính sau:
a) \(\dfrac{\sqrt{7}-5}{2}-\dfrac{6-2\sqrt{7}}{4}+\dfrac{6}{\sqrt{7}-2}-\dfrac{5}{4+\sqrt{7}}\)
b) \(\dfrac{2}{\sqrt{6}-2}+\dfrac{2}{\sqrt{6}+2}+\dfrac{5}{\sqrt{6}}\)
c) \(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{1}{\sqrt{6}}}\)
f) 2\(\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}\)
thực hiện phép tính:
a) \(\dfrac{\sqrt{5}-2}{5-2\sqrt{5}}-\dfrac{5+2\sqrt{5}}{2+\sqrt{5}}+\dfrac{1}{\sqrt{5}}\)
b) \(\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
1)Thực hiện phép tính : A=\(\dfrac{2}{\sqrt{2}}-\dfrac{1}{\sqrt{3}-\sqrt{2}}+\dfrac{2}{\sqrt{3}-1}\) \(B=\left(\dfrac{5+2\sqrt{6}}{\sqrt{3}+\sqrt{2}}\right)^2-\left(\dfrac{5-2\sqrt{6}}{\sqrt{3}-\sqrt{2}}\right)^2\)
2)Cho biểu thức : \(P=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)^2.\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}-\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
a.Rút gọn P
Rút gọn
A=\(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-...-\dfrac{1}{\sqrt{24}-\sqrt{25}}\)
B=\(\dfrac{5}{4+\sqrt{11}}+\dfrac{11-3\sqrt{11}}{\sqrt{11}-3}-\dfrac{4}{\sqrt{5}-1}+\sqrt{\left(\sqrt{5}-2\right)^2}\)
C=\(\dfrac{\sqrt{x}+1}{x\sqrt[]{x}+x+\sqrt{x}}:\dfrac{1}{x^2-\sqrt{x}}\) (với x>0; x#1)
D=\(\dfrac{\sqrt{x^2-10x+25}}{x-5}\)
Bài 1: Cho A = \(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)
So sánh A với 1
Bài 2: Tính
A = \(\left(\dfrac{3}{\sqrt{2}+1}+\dfrac{14}{2\sqrt{2}-1}-\dfrac{4}{2-\sqrt{2}}\right).\left(\sqrt{8}+2\right)\)
Bài 3: Tính tổng
S=\(\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+\dfrac{1}{\sqrt{4}+\sqrt{5}}+...+\dfrac{1}{\sqrt{2018}+\sqrt{2019}}\)
Bài 1: Thực hiện phép tính
a) \(\dfrac{1}{2}\sqrt{48}-\sqrt{32}-\sqrt{75}\)\(-\dfrac{1}{5}\sqrt{50}\)
b) \(\dfrac{3+\sqrt{3}}{3-\sqrt{3}}+\dfrac{3-\sqrt{3}}{3+\sqrt{3}}\)
c) \(4\sqrt{\dfrac{3}{2}}-\dfrac{5}{2}\sqrt{24}+\dfrac{1}{2}\sqrt{50}\)
d) \(\left(2\sqrt{5}+5\sqrt{2}\right).\sqrt{5}-\sqrt{250}\)
Bài 2: Rút gọn biểu thức sau
\(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) với \(a\ge0\)
Bài 3: Cho biểu thức sau
A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-a}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{4-x}{2\sqrt{x}}\)với \(x>0\)và \(x\ne4\)
a) Rút gọn A b) Tìm x để A=-3
Bài 4: Rút gọn biểu thức sau
A=\(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{1+\sqrt{x}}\right):\dfrac{1}{x-1}\) với \(x\ge0\) và \(x\ne1\)
Bài 5: Cho biểu thức
C= \(\left(\dfrac{2+\sqrt{a}}{2-\sqrt{a}}-\dfrac{2-\sqrt{a}}{2+\sqrt{a}}-\dfrac{4a}{a-4}\right):\left(\dfrac{2}{2-\sqrt{a}}-\dfrac{\sqrt{a}+3}{2\sqrt{a}-a}\right)\)
a) Rút gọn C b) Timg giá trị của a để C>0 c) Tìm giá trị của a để C=-1
Bài 6: Giải phương trình
a) \(2\sqrt{3}-\sqrt{4+x^2}=0\\\)
b) \(\sqrt{16x+16}-\sqrt{9x+9}=1\)
c) \(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18x}=0\)
d) \(\sqrt{4\left(x+2\right)^2}=8\)