\(A=\dfrac{1}{2-\sqrt{5}}-\dfrac{1}{2+\sqrt{5}}\)
\(A=\dfrac{2+\sqrt{5}-2+\sqrt{5}}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}\)
\(A=\dfrac{2\sqrt{5}}{4-5}\)
\(A=-2\sqrt{5}\)
mik nghĩ là lm v đó bn
\(A=\dfrac{1}{2-\sqrt{5}}-\dfrac{1}{2+\sqrt{5}}\)
\(A=\dfrac{2+\sqrt{5}-2+\sqrt{5}}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}\)
\(A=\dfrac{2\sqrt{5}}{4-5}\)
\(A=-2\sqrt{5}\)
mik nghĩ là lm v đó bn
Rút gọn biểu thức sau
\(a.\dfrac{\sqrt{5}-2}{5+2\sqrt{5}}-\dfrac{1}{2+\sqrt{5}}+\dfrac{1}{\sqrt{5}}\)
\(b.\dfrac{1}{2+\sqrt{3}}+\dfrac{\sqrt{2}}{\sqrt{6}}-\dfrac{2}{3+\sqrt{3}}\)
\(c.\dfrac{2\sqrt{3}-4}{\sqrt{3}-1}+\dfrac{2\sqrt{2}-1}{\sqrt{2}-1}-\dfrac{1+\sqrt{6}}{\sqrt{2}+3}\)
Rút gọn:
C=\(\dfrac{3+\sqrt{5}}{2\sqrt{5}+\sqrt[]{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
D=\(\dfrac{1+\sqrt{\dfrac{3}{2}}}{1+\sqrt{1+\dfrac{\sqrt{3}}{2}}}+\dfrac{1-\sqrt{\dfrac{3}{2}}}{1-\sqrt{1-\dfrac{\sqrt{3}}{2}}}\)
Tính giá trị các biểu thức sau
1.\(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-\dfrac{1}{\sqrt{4}-\sqrt{5}}+\dfrac{1}{\sqrt{5}-\sqrt{6}}-\dfrac{1}{\sqrt{6}-\sqrt{7}}+\dfrac{1}{\sqrt{7}-\sqrt{8}}-\dfrac{1}{\sqrt{8}-\sqrt{9}}\)
2.\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+\dfrac{1}{5\sqrt{4}+4\sqrt{5}}+\dfrac{1}{6\sqrt{5}+5\sqrt{6}}+\dfrac{1}{7\sqrt{6}+6\sqrt{7}}\)
giúp mk vs ạ
\(\dfrac{2\sqrt{3}-3\sqrt{2}}{\sqrt{6}}-\dfrac{2}{1-\sqrt{3}}\)
\(\dfrac{4}{\sqrt{6}+\sqrt{2}}-\dfrac{\sqrt{54}+\sqrt{2}}{\sqrt{3}+1}\)
\(\dfrac{5+2\sqrt{5}}{\sqrt{5}}-\dfrac{20}{5+\sqrt{5}}-\sqrt{20}\)
Bài 2
\(\sqrt{25x^2-10x+1}=\sqrt{4x^2+8x+4}\)
\(\sqrt{x^2-3}+1=x\)
\(\sqrt{7-2x}=\sqrt{x^2+7}\)
\(\sqrt{9x-27}+\dfrac{1}{2}\sqrt{4x-12}-9\sqrt{\dfrac{x-3}{9}}=2\)
\(p=\dfrac{2}{1-\sqrt{2}}-\dfrac{2}{1+\sqrt{2}}\)
\(Q=\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right)\cdot\left(\sqrt{5}-\sqrt{2}\right)\)
\(R=\dfrac{2}{7+4\sqrt{3}}+\dfrac{2}{7-4\sqrt{3}}\)
\(S=\dfrac{2}{\sqrt{5}+1}-\sqrt{\dfrac{2}{3-\sqrt{5}}}\)
\(T=\dfrac{4}{1-\sqrt{3}}-\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}\)
\(U=\left(\dfrac{1}{2-\sqrt{5}}+\dfrac{2}{\sqrt{5}+\sqrt{3}}\right):\dfrac{1}{\sqrt{21-12\sqrt{3}}}\)
\(V=\dfrac{2}{\sqrt{3}-1}-\sqrt{\dfrac{2}{6-3\sqrt{3}}}\)
\(W=\dfrac{5\sqrt{3}}{\sqrt{3-\sqrt{5}}-\sqrt{3}}-\dfrac{5\sqrt{3}}{\sqrt{3-\sqrt{5}}+\sqrt{3}}\)
\(Y=\dfrac{\sqrt{2}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}\)
rút gọn
\(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{1+\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)
\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right).\left(\sqrt{5}-\sqrt{2}\right)\)
\(\dfrac{2}{\sqrt{5}+1}-\sqrt{\dfrac{2}{3-\sqrt{5}}}\)
\(\left(\dfrac{1}{2-\sqrt{5}}+\dfrac{2}{\sqrt{5}+\sqrt{3}}\right)/\dfrac{1}{\sqrt{21-12\sqrt{3}}}\)
\(\dfrac{2}{\sqrt{3}-1}-\sqrt{\dfrac{2}{6-3\sqrt{3}}}\)
\(\dfrac{\sqrt{2}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}\)
Rút gọn biểu thức :
\((5\sqrt{\dfrac{1}{5}}+\dfrac{1}{2}\sqrt{20}-\dfrac{5}{4}\sqrt{\dfrac{4}{5}+\sqrt{5}}):2\sqrt{5}\) và \(\dfrac{1}{3}\sqrt{48}+3\sqrt{75}-\sqrt{27}-10\sqrt{1\dfrac{1}{3}}\)
rút gọn :
a)\(\left(\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}+\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
b) \(\sqrt{\dfrac{3\sqrt{3}-4}{2\sqrt{3}+1}}+\sqrt{\dfrac{\sqrt{3}+4}{5-2\sqrt{3}}}\)
c) \(\dfrac{2\sqrt{5}-5\sqrt{2}}{\sqrt{2}-\sqrt{5}}+\dfrac{6}{2-\sqrt{10}}+\sqrt{67+12\sqrt{7}}\)
d) \(\left(\dfrac{\sqrt{5}}{\sqrt{2}+1}+\dfrac{14}{2\sqrt{2}-1}-\dfrac{6}{2-\sqrt{2}}\right).\sqrt{17-12\sqrt{2}}\)
* Rút gọn biểu thức
c.\(\dfrac{1}{2\sqrt{2}}-\dfrac{3}{2}\sqrt{4,5}+\dfrac{2}{5}\sqrt{50}\)
d.\(\dfrac{4}{3+\sqrt{5}}-\dfrac{8}{1+\sqrt{5}}+\dfrac{15}{\sqrt{5}}\)
Câu 1 :Tính : B = ( 3 - \(\sqrt{5}\)) ( \(\sqrt{5}\) + 3 )
Câu 2 : Rút gọn : \(\dfrac{\sqrt{5}+1}{3-2\sqrt{2}}-\dfrac{\sqrt{10}}{\sqrt{5}-2}+3\left(\sqrt{2}-\sqrt{5}\right)\)
Câu 3: \(\left(\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}+\dfrac{\sqrt{x}+\sqrt{y}}{1+\sqrt{xy}}\right):\left(1+\dfrac{x+y+2xy}{1-xy}\right)\)
a, Rút gọn biểu thức a
b, Tính giá trị của A khi x + \(\dfrac{2}{2+\sqrt{3}}\)