Cho tam giác ABC vuông tại A, đường cao AH. Gọi D,E lần lượt là hình chiếu của H trên AB, AC.
CMR: a) AD.AB=AE.AC=HC.HB
b) DA.DB+EA.EC=HB.HC
c) AE.AB+AD.AC=AB.AC
d) AH3=BD.CE.BC
e) 1/HD2+1/HC2=1/HE2+1/HB2
f) AB3/AC3=DB/EC
g) BD căn CH+CE căn BH= AH căn BC
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D,E lần lượt là hình chiếu của H trên AB, AC.
CMR: a) AD.AB=AE.AC=HC.HB
b) DA.DB+EA.EC=HB.HC
c) AE.AB+AD.AC=AB.AC
d) AH3=BD.CE.BC
e) 1/HD2+1/HC2=1/HE2+1/HB2
f) AB3/AC3=DB/EC
g) BD căn CH+CE căn BH= AH căn BC
Cho ΔABC vuông tại A, AH là đường cao. Kẻ HE vuông AB tại E, HF vuông AC tại F.
a)AE.AB=AF.AC
b)EF3=BC.BE.CF
c)\(\frac{AB^2}{AC^2}=\frac{HB}{HC}\)
d)BC2=3AH2+BE2+CF2
e)\(\frac{AB^3}{AC^3}=\frac{BE}{CF}\)
f)HB.HC=AE.EB+AF.FC
g)C/m: AM vuông EF (M là trung điểm BC)
Cho tam giác ABC vuông tại A và có đường cao AH
a) Khi AH = 12cm ; AB = 15cm . Tính AC, BC và số đo
BAH( làm tròn đến độ )
b) Gọi D ; E lần lượt là hình chiếu của H trên AB ; AC .
Chứng minh : HB.HC = AE.AC=AD.AB
Cho tam giác ABC vuông tại A, đường cao AH. Gọi M, N lần lượt là hình chiếu của H trên AB, AC. CM:
a) AN.AC=HB.HC
b) \(\frac{HB}{HC}\)= \(\left(\frac{AB}{AC}\right)^2\)
c) \(\frac{BM}{CN}\)= \(\frac{AB^3}{AC^3}\)
d) AH3=MB.BC.CN
Cho tam giác ABC ( gốc A = 90 độ đường Cao AH, HB = 2cm, HC= 8cm
a) Tính AH, AB, AC và gốc C ( gốc C làm tròn đến độ)
b) Gọi E là hình chiếu của H trên AC, chứng minh rằng HB.HC = AE.AB
cho tam giác abc vuông tại a đường cao ah kẻ hd vuông góc ab he vuông góc ac a, chứng minh adhe là hình chữ nhật b, chứng minh da.db+ea.ec=hb.hc
cho tam giác ABC vuông tại A ( AB < BC) có đường cao AH. Từ H kẻ HE ⊥ AB, HF ⊥ AC ( E ∈ AB, F ∈ AC). Gọi O là giao điểm của AH và È. Chứng minh:
a) AH\(^3\) = BC. HE. HF
b) HB . HC = 40E . OF
c) \(\frac{AB^2}{AC^2}\) = \(\frac{HB}{HC}\)
d) \(\frac{AB^3}{AC^3}\) = \(\frac{BE}{CF}\)
Cho tam giác ABC vuông tại A. Đường cao AH. Biết AC=12 cm, BC=15cm.
a) Tính HA, HB, HC.
b) Gọi E, F lần lượt là hình chiếu của góc H lên AB, AC. Chứng minh: AE.AB=AF.AC
c) Chứng minh: HE2+HF2=HB.HC.