Cho tam giác ABC nhọn (AB < AC) , vẽ đường tròn tâm O đường kính BC cắt AB và AC tại D và E, CD cắt BE tại H. a) Chứng minh AH vuông góc BC. b) Chứng minh 4 điểm A, E, H, D cùng thuộc một đường đường tròn, xác định tâm I của đường tròn qua 4 điểm. c) Chứng minh 4 điểm B, C, D, E cùng thuộc 1 đường tròn. Xác định tâm O của đường tròn đi qua 4 điểm d) Chứng minh OI vuông góc với DE
Cho tam giác ABC có 3 góc nhọn. Vẽ đường tròn tâm O, đường kính BC, lần lượt cắt AB và AC tại D,E; BE cắt CD tại H. Chứng minh AH vuông góc BC
cho nửa đường tròn tâm O có đường kính AB=2R. Trên đường tròn O lấy điểm M ( MA<MB) . Tiếp tuyến tại M của O cắt hai tiếp tuyến tại A và B của đường tròn O lần lượt tại C và D a) chứng minh CD = AC+BD b) vẽ đường thẳng BM cắt tia AC tại E và vẽ MH vuông góc với AB tại H Chứng minh OC song song MB và ME.MB=AH.AB c) CM HM là tia phân giác của góc CHD
Cho tam giác ABC đều có cạnh = a, các đường cao BD và CE cắt nhau tại H
a) Chứng minh: 4 điểm B,E,D,C thuộc cùng 1 đường tròn. Hãy xác định tâm và bán kính của đường tròn ấy
b) Chứng minh: Điểm H nắm trong đường tròn và điểm A nằm ngoài đường tròn đi qua 4 điểm B,E,D,C
Từ điểm A nằm ngoài đường tròn (O;R) vẽ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Trên bán kính OC lấy điểm M. Tia AM cắt (O) tại D và E (D nằm giữa A và E). Đoạn thẳng OA cắt BC tại H.
a) Chứng minh 4 điểm A, B, O, C cùng thuộc một đường tròn
b) Chứng minh AC2=AD.AE.
c) Chứng minh góc AHD = góc AEO
d) Vẽ đường thẳng qua O vuông góc với DE và vẽ tiếp tuyến của đường tròn (O) tại E. Hai đường thẳng này cắt nhau tại I. Chứng minh B, C, I thẳng hàng.
Cho tam giác ABC có ba góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Ba đường cao AD ; BE; CF cắt nhau tại H
a) Chứng minh bốn điểm B;E;F;C cùng thuộc một đường tròn. Xác định tâm I của đường tròn này
b)Vẽ đường kính AK của đường tròn (O).Chứng minh BHCK là hình bình hành suy ra H,I,K thẳng hàng
cho ΔABC vuông tại A, có đường cao AH. Gọi K là trung điểm AH. Từ H hạ vuông góc với AB và AC tại D và E. Đường tròn (K;AK) cắt đường tròn (O) đường kính BC tại I, AI cắt BC tại M. Chứng minh:
a) 5 điểm A,I,D,H,E thẳng hàng
b) MK ⊥ AO
c) 4 điểm M,D,K,E thẳng hàng
d) MD.ME=MH2
3. Cho tam giác ABC có ba góc nhọn , các đường cao BE và CF cắt nhau tại H. a ) Chứng minh B , F , E , C cùng thuộc một đường tròn , xác định tâm O. b ) Chứng minh A , E , H , F , cùng thuộc một đường tròn , xác định tâm I. c ) Chứng minh : AH vuông BC và OI vuông EF . đường tròn ( O ) có đường Gấp á huhu