Đặt điện áp xoay chiều $u=U\sqrt{2}\cos(\omega t+\phi)$ ( $U$ không đổi, $\omega$ thay đổi được). vào hai đầu đoạn mạch $AB$ mắc nối tiếp theo thứ tự gồm đoạn $AM$ chứa cuộn cảm thuần có độ tự cảm $L$, đoạn $MN$ chứa điện trở thuần $R$ và đoạn $NB$ chứa tụ điện có điện dung $C$. Khi $\omega =\omega_1$ và $\omega=\sqrt{3}\omega_1$ thì biểu thức của dòng điện trong mạch lần lượt là $i_1=I_0\cos(\omega_1t+\frac{\pi}{3})$ và $i_2=\sqrt{\frac{3}{2}}I_0\cos(\sqrt{3}\omega_1t-\frac{\pi}{12})$. Hãy tính $\frac{R^2L}{C}$
*) Từ hai biểu thức dòng điện, rút ra 2 kết luận sau: khi \(\omega\) thay đổi thì
+) I cực đại tăng \(\frac{I_2}{I_1}=\sqrt{\frac{3}{2}}\Rightarrow \frac{Z_1}{Z_2}=\sqrt{\frac{3}{2}}\)
+) Pha ban đầu của i giảm 1 góc bằng: \(\frac{\pi}{3}-\left(-\frac{\pi}{12}\right)=\frac{5\pi}{12}=75^0\)
tức là hai véc tơ biểu diễn Z1 và Z2 lệch nhau 75 độ, trong đó Z2 ở vị trí cao hơn
*) Dựng giản đồ véc-tơ:
Trong đó: \(\widehat{AOB}=75^0\);
Đặt ngay: \(Z_1=OB=\sqrt{\frac{3}{2}}\Rightarrow Z_2=1\)
Xét tam giác OAB có \(\widehat{AOB}=75^0;OA=1;OB=\sqrt{\frac{3}{2}}\) và đường cao OH.
Với trình độ của bạn thì thừa sức tính ngay được: \(OH=\frac{\sqrt{3}}{2}\)
\(\Rightarrow R=OH=\frac{\sqrt{3}}{2}\)
*) Tính \(Z_L,Z_C\):
\(Z_1^2=R^2+\left(Z_L-Z_C\right)^2;\left(Z_L< Z_C\right)\)
\(Z_2^2=R^2+\left(\sqrt{3}Z_L-\frac{Z_C}{\sqrt{3}}\right)^2\)
Thay số vào rồi giải hệ 2 ẩn bậc nhất, tìm được: \(Z_L=\frac{\sqrt{3}}{2};Z_C=\sqrt{3}\)
*) Tính
\(\frac{R^2L}{C}=\frac{R^2\cdot\left(L\omega_1\right)}{C\omega_1}=R^2Z_LZ_C\\ =\left(\frac{\sqrt{3}}{2}\right)^2\cdot\frac{\sqrt{3}}{2}\cdot\sqrt{3}=\frac{9}{4}\)