Bài 1: Căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
michelle holder

đại số :

1)

a) cho a là 1 nghệm của pt \(\sqrt{2}x^2+x-1=0\) tính : \(\dfrac{2a-3}{\sqrt{2\left(2a^4-2a+3\right)}+2a^2}\)

b) cho x,y nguyên dương thỏa \(x^2+2y^2+2xy-2\left(x+2y\right)+1=0\) tính \(S=2016x^{2017}+2017y^{2016}\)

Neet
4 tháng 4 2017 lúc 22:48

a) a là 1 nghiệm \(\Rightarrow\sqrt{2}a^2+a-1=0\Leftrightarrow2a^4=\left(1-a\right)^2=a^2-2a+1\)

\(\Rightarrow2a^4-2a+3=a^2-2a+1-2a+3=\left(a-2\right)^2\)

\(\sqrt{2\left(2a^4-2a+3\right)}+2a^2=\sqrt{2}\left(a-2\right)+2a^2\)(1)

\(\sqrt{2}a^2+a-1=0\Rightarrow2a^2+\sqrt{2}a-\sqrt{2}=0\)

(1)= \(2a^2+\sqrt{2}a-2\sqrt{2}=-\sqrt{2}\)

...

Neet
4 tháng 4 2017 lúc 23:05

b) find nghiệm nguyên dương:

\(Pt\Leftrightarrow x^2+2y^2+2xy-2\left(x+2y\right)+1=0\)

\(\Leftrightarrow x^2+2x\left(y-1\right)+\left(2y^2-4y+1\right)=0\)\(\Delta'=\left(y-1\right)^2-\left(2y^2-4y+1\right)=-y^2+2y\ge0\)

\(\Leftrightarrow0\le y\le2\) kết hợp \(y\in N\)=> ....


Các câu hỏi tương tự
yeu anh
Xem chi tiết
Nghiêm Thị Nhân Đức
Xem chi tiết
Ánh Dương
Xem chi tiết
Vũ Sơn Tùng
Xem chi tiết
sunsies
Xem chi tiết
ergerjhesu
Xem chi tiết
Nguyễn Quỳnh
Xem chi tiết
Bảo Ngọc Trần
Xem chi tiết
Ngọc Hà
Xem chi tiết