Chương II : Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đinh Chỉ Tuấn

ΔABC cân tại A (∠A bằng 90 độ ).BD⊥AC (D∈AC).CE⊥AB(E∈AB).Gọi I là trung điểm của BD và CE.C/minh rằng:

a) AD=AE

b)AI là tia phân giác của ∠BAC

 

 

 

Nguyễn Lê Phước Thịnh
16 tháng 2 2021 lúc 18:11

Sửa đề: \(\widehat{A}< 90^0\) và I là giao điểm của BD và CE

Xét ΔABD vuông tại D và ΔACE vuông tại E có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)

Suy ra: AD=AE(hai cạnh tương ứng)

b) Xét ΔEBC vuông tại E và ΔDCB vuông tại D có 

BC chung

\(\widehat{EBC}=\widehat{DCB}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔEBC=ΔDCB(cạnh huyền-góc nhọn)

Suy ra: \(\widehat{ECB}=\widehat{DBC}\)(hai góc tương ứng)

hay \(\widehat{IBC}=\widehat{ICB}\)

Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)

nên ΔIBC cân tại I(Định lí đảo của tam giác cân)

hay IB=IC(hai cạnh bên)

Xét ΔABI và ΔACI có 

AB=AC(ΔABC cân tại A)

BI=CI(cmt)

AI chung

Do đó: ΔABI=ΔACI(c-c-c)

Suy ra: \(\widehat{BAI}=\widehat{CAI}\)(hai góc tương ứng)

mà tia AI nằm giữa hai tia AB,AC

nên AI là tia phân giác của \(\widehat{BAC}\)(đpcm)


Các câu hỏi tương tự
Chi Maii Nguyễn
Xem chi tiết
chi vũ
Xem chi tiết
Dieu Thao Truong
Xem chi tiết
Vũ Lê Minh
Xem chi tiết
Dũng Lâm
Xem chi tiết
Dieu Thao Truong
Xem chi tiết
Trâm Nguyễn
Xem chi tiết
Khánh Tạ Quốc
Xem chi tiết
Thái Phạm
Xem chi tiết