d)
\(152-3.\left\{\left[32-2\left(36\div x^2+7\right)\right]+42\right\}=-4\)
\(\Rightarrow3.\left\{\left[32-2\left(36\div x^2+7\right)\right]+42\right\}=152-\left(-4\right)\)
\(\Rightarrow3.\left\{\left[32-2\left(36\div x^2+7\right)\right]+42\right\}=156\)
\(\Rightarrow\left[32-2\left(36\div x^2+7\right)\right]+42=156\div3\)
\(\Rightarrow\left[32-2\left(36\div x^2+7\right)\right]+42=52\)
\(\Rightarrow32-2\left(36\div x^2+7\right)=52-42\)
\(\Rightarrow32-2\left(36\div x^2+7\right)=10\)
\(\Rightarrow2\left(36\div x^2+7\right)=32-10\)
\(\Rightarrow2\left(36\div x^2+7\right)=22\)
\(\Rightarrow36\div x^2+7=22\div2\)
\(\Rightarrow36\div x^2+7=11\)
\(\Rightarrow36\div x^2=11-7\)
\(\Rightarrow36\div x^2=4\)
\(\Rightarrow x^2=36\div4\)
\(\Rightarrow x^2=9\)
\(\Rightarrow x^2=3^2\)
\(\Rightarrow x=3\)
Vậy \(x=3\)