Đại số lớp 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Zoro Roronoa

Cộng trừ phân số

1)\(x+2+\frac{3}{x-2}\)

2)\(\frac{x^2}{\left(x-y\right)\left(x-z\right)}+\frac{y^2}{\left(y-x\right)\left(y-z\right)}+\frac{z^2}{\left(z-x\right)\left(z-y\right)}\)

Vương Quốc Anh
21 tháng 2 2017 lúc 22:13

1)

\(x+2+\frac{3}{x-2}\)

\(=\frac{\left(x+2\right)\left(x-2\right)}{x-2}+\frac{3}{x-2}\)

\(=\frac{x^2-4}{x-2}+\frac{3}{x-2}\)

\(=\frac{x^2-4+3}{x-2}\)

\(=\frac{x^2-1}{x-2}\)

Vương Quốc Anh
21 tháng 2 2017 lúc 22:32

2)

\(\frac{x^2}{\left(x-y\right)\left(x-z\right)}+\frac{y^2}{\left(y-x\right)\left(y-z\right)}+\frac{z^2}{\left(z-x\right)\left(z-y\right)}\)

\(=\frac{x^2}{\left(x-y\right)\left(x-z\right)}-\frac{y^2}{\left(x-y\right)\left(y-z\right)}+\frac{z^2}{\left(x-z\right)\left(y-z\right)}\)

\(=\frac{x^2\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}-\frac{y^2\left(x-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}+\frac{z^2\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\frac{x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\frac{x^2y-x^2z-xy^2+y^2z+xz^2-yz^2}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\frac{x^2y-x^2z-xy^2+y^2z+xz^2-yz^2}{\left(x^2-xy-xz+yz\right)\left(y-z\right)}\)

\(=\frac{x^2y-x^2z-xy^2+y^2z+xz^2-yz^2}{x^2y-xy^2-xyz+y^2z-x^2z+xyz+xz^2-yz^2}\)

\(=\frac{x^2y-x^2z-xy^2+y^2z+xz^2-yz^2}{x^2y-x^2z-xy^2+y^2z+xz^2-yz^2}\)

\(=1\)

Phương An
21 tháng 2 2017 lúc 22:33

\(\frac{x^2}{\left(x-y\right)\left(x-z\right)}+\frac{y^2}{\left(y-x\right)\left(y-z\right)}+\frac{z^2}{\left(z-x\right)\left(z-y\right)}\)

\(=\frac{1}{x-y}\times\left(\frac{x^2}{x-z}-\frac{y^2}{y-z}\right)+\frac{z^2}{\left(z-x\right)\left(z-y\right)}\)

\(=\frac{1}{x-y}\times\left(\frac{x^2\left(y-z\right)}{\left(x-z\right)\left(y-z\right)}-\frac{y^2\left(x-z\right)}{\left(y-z\right)\left(x-z\right)}\right)+\frac{z^2}{\left(z-x\right)\left(z-y\right)}\)

\(=\frac{1}{x-y}\times\frac{x^2y-x^2z-xy^2+y^2z}{\left(x-z\right)\left(y-z\right)}+\frac{z^2}{\left(z-x\right)\left(z-y\right)}\)

\(=\frac{1}{x-y}\times\frac{xy\left(x-y\right)-z\left(x^2-y^2\right)}{\left(x-z\right)\left(y-z\right)}+\frac{z^2}{\left(z-x\right)\left(z-y\right)}\)

\(=\frac{1}{x-y}\times\frac{xy\left(x-y\right)-z\left(x-y\right)\left(x+y\right)}{\left(x-z\right)\left(y-z\right)}+\frac{z^2}{\left(z-x\right)\left(z-y\right)}\)

\(=\frac{1}{x-y}\times\frac{\left(x-y\right)\left(xy-z\left[x+y\right]\right)}{\left(x-z\right)\left(y-z\right)}+\frac{z^2}{\left(z-x\right)\left(z-y\right)}\)

\(=\frac{1}{x-y}\times\frac{\left(x-y\right)\left(xy-xz-zy\right)}{\left(x-z\right)\left(y-z\right)}+\frac{z^2}{\left(x-z\right)\left(y-z\right)}\)

\(=\frac{xy-xz-zy+z^2}{\left(x-z\right)\left(y-z\right)}\)

\(=\frac{y\left(x-z\right)-z\left(x-z\right)}{y\left(x-z\right)-z\left(x-z\right)}\)

= 1


Các câu hỏi tương tự
Yoona
Xem chi tiết
Nguyễn Hữu Tuyên
Xem chi tiết
marian
Xem chi tiết
Hoàng Nguyễn Quỳnh Khanh
Xem chi tiết
Minh Phương
Xem chi tiết
Nguyen Bao Linh
Xem chi tiết
Ngọc Minh Dương
Xem chi tiết
Vịtt Tên Hiền
Xem chi tiết
Chu Ngọc Ngân Giang
Xem chi tiết