\(Ta.có:\left\{{}\begin{matrix}3.2n.2^a=1920\\3.2n.\left(2^a-1\right)=1440\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3.2n.2^a=1920\\3.2n.2^a-3.2n=1440\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3.2n.2^a=1920\\3.2n=1920-1440=480\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2n=160\\2^a=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2n=160\\a=2\end{matrix}\right.\)