Có tồn tại hay không các số hữu tỉ dương a,b sao cho :
\(\sqrt{a}+\sqrt{b}=\sqrt{2}\)
@Akai Haruma ; @Azuki Tsukishima ;....Chỉ giúp em cách giải dạng này với ạ !!! ( chi tiết nhé ạ )
Có, chẳng hạn \(\sqrt{\dfrac{1}{2}}+\sqrt{\dfrac{1}{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\) (với \(a=b=\dfrac{1}{2}\in Q\))
Với mọi a, b thỏa mãn
\(\left\{{}\begin{matrix}a=\sqrt{2n^2}\\b=\sqrt{2\left(1-n\right)^2}\end{matrix}\right.\)\(\left(0< n< 1,n\in Q\right)\)