\(y'=f\left(x\right)=x^2+2\left(m+1\right)x+3m-2\)
Để hàm số nghịch biến trên \(\left[-8;8\right]\Leftrightarrow f\left(x\right)=0\) có 2 nghiệm pb thỏa mãn \(x_1\le-8< 8\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}f\left(-8\right)\le0\\f\left(8\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}64-16\left(m+1\right)+3m-2\le0\\64+16\left(m+1\right)+3m-2\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge\frac{46}{13}\\m\ge-\frac{78}{19}\end{matrix}\right.\) \(\Rightarrow m\ge\frac{46}{13}\)