Lấy 11 số tự nhiên bất kỳ khi chia cho 10 thì được 11 số dư nhận 1 trong 10 số: 0; 1; 2; ...; 9. Theo nguyên lý Đirichlê phải có 2 số có cùng số dư, nên hiệu của 2 số đó chia hết cho 10. Khi đó hai số đó có chữ số tận cùng giống nhau
Lấy 11 số tự nhiên bất kỳ khi chia cho 10 thì được 11 số dư nhận 1 trong 10 số: 0; 1; 2; ...; 9. Theo nguyên lý Đirichlê phải có 2 số có cùng số dư, nên hiệu của 2 số đó chia hết cho 10. Khi đó hai số đó có chữ số tận cùng giống nhau
Chứng tỏ rằng với sáu số tự nhiên bất kì, luôn có ít nhất hai số tự nhiên mà hiệu của chúng chia hết cho 5
Cho số tự nhiên n. Chứng minh rằng :
a) Nếu n tận cùng bằng chữ số chẵn thì n và 6n có chữ số tận cùng như nhau.
b) Nếu n tận cùng bằng chữ số lẻ khác 5 thì n4 tận cùng bằng 1. Nếu n tận cùng bằng chữ số chẵn khác 0 thì n4 tận cùng bằng 6.
c) Số n5 và n có chữ số tận cùng như nhau.
Trên bảng người ta viết các số 123...2005. Mỗi lần xoá đi 2 số bất kì ta thay bởi hiệu của chúng. CMR dù có làm như thế bao nhiêu lần thì cũng không bao giờ thu được kết quả số còn lại trên bảng là số 0.
a) Tìm số tự nhiên n nhỏ nhất biết khi chia cho 11; 17; 29 thì số dư lần lượt là 6; 12; 24
b) Tìm số tự nhiên nhỏ nhất có chữ số tận cùng là 7; chia 13 dư 8; chia 19 dư 14
Có bao nhiêu số tự nhiên có 4 chữ số,chia hết cho 4 mà chữ số đó tận cùng là 2?
Số chẵn là số tự nhiên có chữ số tận cùng là 0, 2, 4, 6, 8; số lẻ là số tự nhiên có chữ số tận cùng là 1, 3, 5, 7, 9. Hai số chẵn (hoặc lẻ) liên tiếp thì hơn kém nhau 2 đơn vị.
a) Viết tập hợp C các số chẵn nhỏ hơn 10.
b) Viết tập hợp L các số lẻ lớn hơn 10 nhưng nhỏ hơn 20.
c) Viết tập hợp A ba số chẵn liên tiếp, trong đó số nhỏ nhất là 18.
d) Viết tập hợp B bốn số lẻ liên tiếp, trong đó số lớn nhất là 31.
chứng minh rằng trong 39 số tự nhiên liên tiếp bất kì luôn tồn tại 1 số có tổng các chữ số chia hết cho 11
TÌm số tự nhiên n có tận cùng bằng 2 biết rằng n ; 2n ; 3n đều là số có 3 chữ số và 3 chữ số đó khác nhau và khác 0
Chứng tỏ rằng với hai số tự nhiên bất kì khi chia cho m có cùng số dư thí hiệu của chúng chia hiết cho 5 .