Bài 1: Tập hợp, phần tử của tập hợp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
MY HOME IS THE MOST BEAU...

CMR:\(\forall n\in N\)*(n>1) thì \(2^{2^n}+1\) có chữ số tận cùng là 7

Akai Haruma
22 tháng 1 2018 lúc 10:24

Lời giải:

Ta có: \(2^{2^n}+1=2^{2^{n-1}.2}+1=(2^2)^{2^{n-1}}+1=4^{2^{n-1}}+1\)

Nhận thấy:

\(4^1=4\)

\(4^2=4^2.4=...6\)

\(4^3=4^2.4=..6\times 4=...4\)

\(4^4=4^3.4=...4\times 4=...6\)

\(4^5=4^4.4=...6\times 4=...4\)

\(4^6=4^5.4=....4\times 4=....6\)

.............................

Như vậy, ta thấy lũy thừa bậc chẵn của $4$ thì có tận cùng là $6$

Vì \(n>1\Rightarrow 2^{n-1}\) chẵn. Do đó \(4^{2^{n-1}}\) có tận cùng là 6

\(\Rightarrow 2^{2^n}+1=4^{2^{n-1}}+1\) có tận cùng là $7$

Ta có đpcm.


Các câu hỏi tương tự
Linh Nguyễn
Xem chi tiết
lucy heartfilia
Xem chi tiết
nặc nô
Xem chi tiết
Trần Mạnh Cường
Xem chi tiết
Pham Hang
Xem chi tiết
Phạm Linh Băng
Xem chi tiết
Trần Trung Luật
Xem chi tiết
Thảo Vy
Xem chi tiết
tran dinh viet
Xem chi tiết