số hạng cuối của B phải là 3^1992 mới đúng
a, nhóm 3 số hạng liền nhau thì ta có
B=(3+3^5+3^9) +...+ [3^n+3^(n+4)+3^(n+5)] +...+ (3^1984+3^1988+3^1992)
xét số hạng tổng quát: 3^n+3^(n+4)+3^(n+5)= 3^n .(1+3^4+3^8)=
=3^n . (3^3-1)(3^3+1)(3^6+1)/(3^4-1)
=3^n . 26 .(3^3+1)(3^6+1)/(3^4-1)
vậy B chia hết cho 26, hay B chia hết cho 13
b, nhóm 4 số hạng liên tiếp rồi làm tương tự ý a
cụ thể, số hạng tổng quát là 3n+3n+4+3n+8+3n+12
= 3n (1+34+38+312)= 3n(1+811+812+813)= 3n(81+1)(812+1)= 3n.82.(812+1)