Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
 Mashiro Shiina

CMR: Với mọi tam giác ABC ta có: \(\dfrac{sinA+sinB+sinC}{cosA+cosB+cosC}\le\dfrac{tanA.tanB.tanC}{3}\)

Serena chuchoe
1 tháng 7 2018 lúc 16:18

Không mất tính tổng quát giả sử: \(A\ge B\ge C\)

=> \(tanA\ge tanB\ge tanC;cosA\le cosB\le cosC\)

Áp dụng BĐT Chebyshev ta có:

\(\left(\dfrac{tanA+tanB+tanC}{3}\right)\left(\dfrac{cosA+cosB+cosC}{3}\right)\ge\dfrac{tanA\cdot cosA+tanB\cdot cosB+tanC\cdot cosC}{3}\)

=> \(\dfrac{sinA+sinB+sinC}{cosA+cosB+cosC}\le\dfrac{tanA+tanB+tanC}{3}\)

mặt khác ta có: \(tanA+tanB+tanC=tanA\cdot tanB\cdot tanC\)

=> \(\dfrac{sinA+sinB+sinC}{cosA+cosB+cosC}\le\dfrac{tanA\cdot tanB\cdot tanC}{3}\left(đpcm\right)\)

đẳng thức xảy ra khi tam giác ABC đều

Hung nguyen
2 tháng 7 2018 lúc 9:10

Đề sai.

\(tan90^o=\dfrac{1}{0}\) (không thể chia cho không) nên đề bài sai với trường hợp tam giác vuông rồi.

Aki Tsuki
1 tháng 7 2018 lúc 15:54

hình như lp 8 không có phần lượng giác

Mysterious Person
1 tháng 7 2018 lúc 16:03

cái này là tào lao nha bé ; thử với mọi tam giác nào vuông thì nó đều không được

Serena chuchoe
1 tháng 7 2018 lúc 16:11

tre bư sep đi cậu :)


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Ngô Tấn Đạt
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết