Lời giải:
Vì $1\leq x\leq 4$ nên $x-1, 4-x\geq 0$
Áp dụng BĐT Cauchy cho các số không âm ta có:
\(\sqrt{(x-1)(4-x)}\leq \frac{(x-1)+(4-x)}{2}=\frac{3}{2}\)
Ta có đpcm.
Dấu "=" xảy ra khi $x-1=4-x$ hay $x=\frac{5}{2}$
Lời giải:
Vì $1\leq x\leq 4$ nên $x-1, 4-x\geq 0$
Áp dụng BĐT Cauchy cho các số không âm ta có:
\(\sqrt{(x-1)(4-x)}\leq \frac{(x-1)+(4-x)}{2}=\frac{3}{2}\)
Ta có đpcm.
Dấu "=" xảy ra khi $x-1=4-x$ hay $x=\frac{5}{2}$
Tìm x
a)\(\sqrt{x-1}=2\left(x\ge1\right)\)
b)\(\sqrt{3-x}=4\left(x\le3\right)\)
c)\(2.\sqrt{3-2x}=\dfrac{1}{2}\left(x\le\dfrac{3}{2}\right)\)
d)\(4-\sqrt{x-1}=\dfrac{1}{2}\left(x\ge1\right)\)
e)\(\sqrt{x-1}-3=1\)
f)\(\dfrac{1}{2}-2.\sqrt{x+2}=\dfrac{1}{4}\)
Rút gọn
a) \(\sqrt{\sqrt{2\sqrt{6}+6+2\sqrt{2}+2\sqrt{3}}-\sqrt{5+2\sqrt{6}}}\)
b) \(\sqrt{x^2-6x+9}-\dfrac{x^2-9}{\sqrt{9-6x+x^2}}\)
c) \(\dfrac{\sqrt{x+\sqrt{4\left(x-1\right)}}-\sqrt{x-\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(\sqrt{x-1}-\dfrac{1}{\sqrt{x-1}}\right)\)
d) Rút gọn \(A=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)với \(2\le x\le4\)
Rút gọn biểu thức: \(A=\dfrac{\sqrt{1-\sqrt{1-x^2}}\left(\sqrt{\left(1+x\right)^3}+\sqrt{\left(1-x\right)^3}\right)}{2-\sqrt{1-x^2}}\) với \(-1\le x\le1\)
Cho biểu thức:
\(\\ A=\left(\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{2-\sqrt{x}}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\right):\left(2-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a) Rút gọn A
b) Tìm x để \(\dfrac{1}{A}\le\dfrac{1}{5}\)
B1 Cho biểu thức A=\(\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{x-3}{x+2\sqrt{x}+4}-\frac{\sqrt{x}+7}{x\sqrt{x}-8}\right):\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)
1, Rút gọn A. Tìm x sao cho A<2
2, Cho 1≤a,b,c≤2. Chứng minh rằng \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le10\)
\(x=\dfrac{\sqrt{1+\sqrt{1-a^2a}}\left[\left(1+a\right)\sqrt{1+a}-\left(1-a\right)\sqrt{1-a}\right]}{a\left(2+\sqrt{1-a^2}\right)}\) với \(-1\le a\le1;a\ne0\)
Hãy tính giá trị của biểu thức \(A=x^4-x^2+8\)
1 Giải hệ pt \(\left\{{}\begin{matrix}\left(x-1\right)^3=1-\dfrac{27}{y^3}\\x^2+\dfrac{9}{y^2}=2x\end{matrix}\right.\)
2 CM \(n^4-10n^2+9\) chia hết 384 với mọi n lẻ
3 cho \(0\le x\le\dfrac{1}{2}\) tìm Max Q=\(x^2\left(1-2x\right)\)
4 cho x,y,z dương thỏa \(x^2+y^2+z^2=3xyz\).CM \(\dfrac{x^2}{x^4+yz}+\dfrac{y^2}{y^4+xz}+\dfrac{z^2}{z^4+xy}\le\dfrac{3}{2}\)
Bài 1: Cho \(A=\left(\dfrac{x-4}{\sqrt{x}-2}+\dfrac{x\sqrt{x}-8}{4-x}\right):\left[\dfrac{\left(\sqrt{x}-2\right)^2+2\sqrt{x}}{\sqrt{x}+2}\right]\)với \(x\ge0\); \(x\ne4\)
a, Rút gọn A
b, CMR: \(A< 1\) với \(x\ge0\); \(x\ne4\)
c, Tìm x để A nguyên
Rút gọn các biểu thức sau:
\(A=\left(\dfrac{1}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right)\left(1-\dfrac{3}{\sqrt{x}}\right)\)
\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}+\dfrac{6-7\sqrt{x}}{x-4}\right)\left(\sqrt{x}+2\right)\)
\(C=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{1}}\right):\dfrac{\sqrt{a}+1}{a-1}\)
\(D=\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(E=\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1+\dfrac{x-\sqrt{x}}{1-\sqrt{x}}\right)\)
giúp mình với ạ!mình đang cần gấp