Đặt A \(=\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{100}{3^{100}}\)
\(\Rightarrow3A=1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{99}}\)
\(\Rightarrow3A-A=\left(1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{99}}\right)-\left(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{100}{3^{100}}\right)\)
\(\Rightarrow2A=1+\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\dfrac{100}{3^{100}}\)
\(\Rightarrow2A=1+\dfrac{1}{2}-\dfrac{1}{3^{99}\times2}-\dfrac{100}{3^{100}}\)
\(\Rightarrow A=\dfrac{3}{4}-\dfrac{1}{3^{99}\times4}-\dfrac{50}{3^{100}}< \dfrac{3}{4}\)
Vậy ...
Chúc Các Bạn Học Tốt !