Bài 1: Căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tan Ker

CMR \(\dfrac{1.3.5...\left(2n-1\right)}{2.4.6...2n}< \dfrac{1}{\sqrt{2n+1}}\) \(\forall n\in Z_+\)

Akai Haruma
23 tháng 11 2017 lúc 0:44

Lời giải:

Sử dụng quy nạp:

Với \(n=1\Rightarrow \frac{1}{2}< \frac{1}{\sqrt{3}}\) (đúng)

Với \(n=2\Rightarrow \frac{1.3}{2.4}< \frac{1}{\sqrt{5}}\) (đúng)

.............

Giả sử bài toán đúng với \(n=k\), tức là :

\(\frac{1.3.5...(2k-1)}{2.4.6...2k}< \frac{1}{\sqrt{2k+1}}\) (*)

Ta cần chỉ ra nó cũng đúng với \(n=k+1\) hay :

\(\frac{1.3.5....(2k-1)(2k+1)}{2.4.6....(2k)(2k+2)}< \frac{1}{\sqrt{2k+3}}\). Thật vậy, theo (*) ta có:

\(\frac{1.3.5....(2k-1)(2k+1)}{2.4.6....(2k)(2k+2)}< \frac{1}{\sqrt{2k+1}}.\frac{2k+1}{2k+2}=\frac{\sqrt{2k+1}}{2k+2}\) (1)

Xét \(\frac{\sqrt{2k+1}}{2k+2}-\frac{1}{\sqrt{2k+3}}=\frac{\sqrt{(2k+1)(2k+3)}-(2k+2)}{(2k+2)\sqrt{2k+3}}\) \(=\frac{-1}{[\sqrt{(2k+1)(2k+3)}+(2k+2)](2k+2)\sqrt{2k+3}}<0\)

Suy ra \(\frac{\sqrt{2k+1}}{2k+2}< \frac{1}{\sqrt{2k+3}}(2)\)

Từ \((1);(2)\Rightarrow \frac{1.3.5....(2k-1)(2k+1)}{2.4.6....(2k)(2k+2)}< \frac{1}{\sqrt{2k+3}}\)

Vậy bài toán đúng với \(n=k+1\), phép quy nạp hoàn thành.

Do đó ta có đpcm.


Các câu hỏi tương tự
Ho Chau Ngan
Xem chi tiết
Nguyễn Thị Mỹ Lệ
Xem chi tiết
Khởi My
Xem chi tiết
Hà Trần
Xem chi tiết
Hoai Bao Tran
Xem chi tiết
Thiều Khánh Vi
Xem chi tiết
Hoai Bao Tran
Xem chi tiết
mimi
Xem chi tiết
Trần Huỳnh Tú Trinh
Xem chi tiết