Chứng minh rằng :\(\dfrac{1.98+2.97+3.96+...+96.3+97.2+98.1}{1.2+2.3+3.4+...+96.97+97.98+98.99}=\dfrac{1}{2}\)
1. Chứng minh rằng:
\(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100}< 1\)
2. Chứng minh rằng:
\(\dfrac{1.2-1}{2!}+\dfrac{2.3-1}{3!}+\dfrac{3.4-1}{4!}+...+\dfrac{99.100-1}{100!}< 2\)
A=\(\dfrac{1}{1.2^2}+\dfrac{1}{2.3^2}+\dfrac{1}{3.4^2}+...+\dfrac{1}{49.50^2}\)
B=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\)
CM A<B
\(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...-\dfrac{1}{2014.2015}+\dfrac{1}{2015.2016}\)
Ghi cách giải lun nha
Tính:
\(\dfrac{1^2}{1.2}\).\(\dfrac{2^2}{2.3}\).\(\dfrac{3^2}{3.4}\)...\(\dfrac{10^2}{10.11}\)
Tính tổng S = \(\dfrac{5}{1.2}+\dfrac{13}{2.3}+\dfrac{25}{3.4}+\dfrac{41}{4.5}+...+\dfrac{181}{9.10}\)
CMR : \(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)
CMR:
\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{49.50}=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)
Tính \(A=\dfrac{1+\left(1+2\right)+...+\left(1+2+...+98\right)}{1.2+2.3+...+98.99}\)