Ta có: \(a^4+a^3b+ab^3+b^4\)
\(=a^3\left(a+b\right)+b^3\left(a+b\right)\)
\(=\left(a+b\right)\left(a^3+b^3\right)\)
\(=\left(a+b\right)^2\cdot\left(a^2-ab+b^2\right)\)
Ta có: \(a^2-ab+b^2\)
\(=a^2-2\cdot a\cdot\frac{1}{2}b+\frac{1}{4}b^2+\frac{3}{4}b^2\)
\(=\left(a-\frac{1}{2}b\right)^2+\frac{3}{4}b^2\)
Ta có: \(\left(a-\frac{1}{2}b\right)^2\ge0\forall a,b\)
\(\frac{3}{4}b^2\ge0\forall b\)
Do đó: \(\left(a-\frac{1}{2}b\right)^2+\frac{3}{4}b^2\ge0\forall a,b\)
\(\Leftrightarrow a^2-ab+b^2\ge0\forall a,b\)
\(\Leftrightarrow\left(a^2-ab+b^2\right)\left(a+b\right)^2\ge0\forall a,b\)(Vì \(\left(a+b\right)^2\ge0\forall a,b\))
hay \(a^4+a^3b+ab^3+b^4\ge0\forall a,b\)(đpcm)