ta thấy \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2010^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2009.2010}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2009}-\dfrac{1}{2010}=1-\dfrac{1}{2010}< 1\)=>\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...\dfrac{1}{2010^2}>1\left(đpcm\right)\)