Biết chu vi của một tứ giác là 20 cm, khi đó tổng độ dài d của hai đường chéo của tứ giác đó là:
d = 20 cm
d = 5 cm
10 cm < d < 20 cm
1.cho a,b,c là 3 cạnh tam giác
chứng minh ab(a+b-2c)+bc(b+c-2a)+ac(c+a-2b) lớn hơn hoặc = 0
Cho a, b, c là 3 cạnh 1 tam giác, p là nửa chu vi tam giác.
CMR : \(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge2\cdot\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Cho a, b,c là 3 cạnh của 1 tam giác.
CMR: a) \(\dfrac{a}{b+c+a}+\dfrac{b}{c+a-b}+\dfrac{c}{a+b-c}\ge3\)
b) \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\) là độ dài 3 cạnh của 1 tam giác.
Giải BPT giùm mình với các bạn , thực sự mình cần rất gấp ạ !
1) \(\dfrac{2x+1}{2}+3>=\dfrac{3-5x}{3}-\dfrac{4x-1}{4}\)
2) \(\dfrac{5x-3}{5}+\dfrac{2x+1}{4}< =\dfrac{2-3x}{2}-5\)
*Chú thích : < = là bé hơn hoặc bằng
> = là lớn hơn hoặc bằng.
Cho 3 số a, b, c thoả mãn a+b+c=10. Chứng minh a^2 + b^2 +c^2 lớn hơn hoặc bằng 100/3.
a,b,c là số đo 3 cạnh của 1 tam giác.Cm 1/(a+b-c)+1/(b+c-a)+1/(c+a-b)>=1/a+1/b+1/c
giải các bất phương trình sau :
a, x^2 + 6 / x - 3 >0 ( ^2 : bình phương )
b, x^2 - x + 5 >0
c, 3- 4x - x^2 >(=) 0 ( lớn hơn hoặc bằng 0 )
d, 2 - 3x / 4 <(=) 0 ( bé hơn hoặc bằng 0 )
1) Chứng minh: 2 (a2 + b2) \(\ge\) (a + b)2.
2) Cho x > 0, y > 0. Chứng minh: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
3) Cho a, b, c là độ dài 3 cạnh của 1 tam giác. Chứng minh:
a2 + b2 + c2 < 2 (ab + bc + ca).