chung minh bat dang thuc sau
\(\sqrt{cos^4a+cos^4b}+sin^2a+sin^2b\)
Cho 0* < x <90*. Chứng minh đẳng thức sau:
\(\dfrac{\sin x+\cos x-1}{1-\cos x}=\dfrac{2\cos x}{\sin x-\cos x+1}\)
Tính giá trị của biểu thức
A=\(\sin^210^0+\sin^220^0+\sin^230^0+...+\sin^280^0+2013\)
B=\(\cos^21^0+\cos^22^0+...+\cos^289^0\)
C=\(\frac{\sin33^0}{\cos57^0}+\frac{\tan32^0}{\cot58^0}-2\left(\sin20^0.\cos70^0+\cos20^0.\sin70^0\right)\)
D=\(4\cos^2a-6\sin^2a\) biết \(\sin a=\frac{1}{5}\)
Rút gọn biểu thức:
a)\(\frac{2}{\sqrt{5}-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
b)\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(2+\sqrt{3}\right)\)
c)\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)
d)\(\left(1+tan^2a\right)\left(1-sin^2a\right)+\left(1+cotan^2a\right)\left(1-cos^2a\right)\)
bài 1
a) Biết tan \(\alpha=\sqrt{3}\) hãy tính sin \(\alpha\) , cos \(\alpha\) , cot \(\alpha\)
b) hãy tính tan\(\alpha\) biết sin\(\alpha=\dfrac{15}{17}\)
bài 2 : cho \(\alpha\) là góc nhọn bất kì. CMR biểu thức sau khong phụ thuộc vào \(\alpha\)
A = (sin \(\alpha+cos\alpha\))\(^2\) + \(\left(\sin\alpha-\cos\alpha\right)^2+2\)
:((
Cho tam giác ABC có 3 góc nhọn AD , BE , CF là đường cao .C/m
a) AD . BE . CF = AB . BC . CA . Sin A . Sin B . Sin C = AB . BC . CA . Cos góc CAD . Cos ABE . Cos BCF
b) Tính \(\dfrac{^{^SAEF}}{^{SABC}}=^{^{ }Cot^2A}\)
c) \(\dfrac{^{SADF}}{SABC}=1-Cót^{2
}A-Cot^2B-Cot^2C\)
d) Gọi M là trung điểm BC , giả sử góc BAC = 60 độ , CMR : tam giác MFC đều
Chứng minh các công thức sau :
\(Tan\alpha=\dfrac{sin\alpha}{cos\alpha}\)
\(Cot\alpha=\dfrac{cos\alpha}{sin\alpha}\)
\(sin^2\alpha+cos^2\alpha=1\)
\(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\)
\(1+cos^2\alpha=\dfrac{1}{sin^2\alpha}\)
\(cos^4\alpha-sin^4\alpha=2cos^2\alpha-1\)
cho A là góc nhọn rút gon biểu thức
A=\(\sin^6a+\cos^6a+3\sin^2a-\cos^2a\)
các bạn giải thật chi tiết hộ mình nha đừng có bỏ bước nào nha
mình cảm ơn
giải phương trình:
\(\cos2x+\sqrt{3}\left(1+\sin x\right)=\frac{2\cos x+2\sin2x-2\sin x-1}{2\cos x-1}\)