cm 0<=α<=π thì (2cosα-1)^2-4sin^2(α/2-π/4)>(\(\left(\sqrt{2sin\alpha}-2\right)\left(3-cos2\alpha\right)\)
tính các giá trị lượng giác của góc x khi biết \(\cos\dfrac{\alpha}{2}=\dfrac{4}{5}\) và 0<x<\(\dfrac{\pi}{2}\)
Biểu thức \(P=\dfrac{\left(1-tan^2x\right)^2}{4tan^2x}-\dfrac{1}{4sin^2xcos^2x}\) có giá trị không phụ thuộc biến \(x\). Khi đó phương trình ẩn \(y\) sau đây có bn nghiệm dương: \(y^2-3y+P=0\)
Cho \(\cos\alpha=-\dfrac{2}{3}\) và \(\dfrac{\pi}{2}< \alpha< \pi\). Biết \(K=\sin2\alpha+cos2\alpha=x+y\sqrt{5}\) với x, y thuộc Q và \(\dfrac{x}{y}=\dfrac{a}{b}\) là phân số tối giản. Tính \(a-b\)
1. sin^8(x) - cos^8(x) - 4sin^6(x) + 6sin^4(x) - 4sin^2(x) = 1
2. sin6x+sin4x+sin2x/1+cos2x+cos4x = 2sin2x
3. 1+sin2x /cosx+sinx - 1-tan^2(x/2)/1+tan^2(x/2) = sinx
4. cos4x + 4cos2x + 3 = 8cos^4(x)
5. 1+cosx+cos2x+cos3x/ 2cos^2(x)+cosx-1 = 2cosx
1. sin^8(x) - cos^8(x) - 4sin^6(x) + 6sin^4(x) - 4sin^2(x) = 1
2. sin6x+sin4x+sin2x/1+cos2x+cos4x = 2sin2x
3. 1+sin2x /cosx+sinx - 1-tan^2(x/2)/1+tan^2(x/2) = sinx
4. cos4x + 4cos2x + 3 = 8cos^4(x)
5. 1+cosx+cos2x+cos3x/ 2cos^2(x)+cosx-1 = 2cosx
Cho \(0< \alpha,\beta< \frac{\pi}{2}\)và \(\left\{{}\begin{matrix}3\sin^2\alpha+2\sin^2\beta=1\\3\sin2\alpha-2\sin2\beta=0\end{matrix}\right.\). Chứng minh rằng: \(\alpha+2\beta=\frac{\pi}{2}\).
Chứng minh rằng
1 - 1/4sin2x + cosx = cos4(x/2) + cos2(x/2)
Cho \(ax^2+bx+c=0\) có nghiệm, \(f\left(x\right)=\alpha x^2+\beta x+\gamma\) \(\left(a.\alpha\ne0\right)\) có hai nghiệm và khoảng hai nghiệm đó chứa \(\left(0;2\right)\). Chứng minh \(a.f\left(0\right)x^2+b.f\left(1\right)x+c.f\left(2\right)=0\) có nghiệm
Rút gọn các biểu thức :
A= \(\sqrt{3}\) sin ( x - \(\dfrac{\pi}{3}\) ) + sin ( x + \(\dfrac{\pi}{6}\) )
B= cos7x cos5x - \(\sqrt{3}\) sin2x + sin7x sin5x
C= 2sin( 2x -\(\dfrac{\pi}{6}\)) + 4sin + 1
D= \(\sqrt{3}\) cos2x + sin2x + 2sin(2x - \(\dfrac{\pi}{6}\))
E= sin2x + 2\(\sqrt{2}\) cosx + 2sin(x + \(\dfrac{\pi}{4}\)) +3