\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}< 1\)
=>điều cần chứng minh
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}< 1\)
=>điều cần chứng minh
Cho A = \(\frac{1}{5^2}+\frac{1}{5^3}+\frac{1}{5^4}+.......+\frac{n}{5^{n+1}}+.......+\frac{11}{5^{12}}\) với n \(\in\) N. Chứng minh rằng A < \(\frac{1}{16}\)
Giúp mk vs
1. Cho \(\overline{ababab}\) là số có sáu chữ số, chứng tỏ số \(\overline{ababab}\) là bội của 3.
2. Chứng minh rằng: \(11^{n+2}+12^{2n+1}\)
3. Chứng minh: \(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^n}< 1\)
4. Tìm số nguyên x,y biết: 3xy + x - y = 2
1. a) So sánh hai số: (-5)39 và (-2)91
b) So sánh; \(\sqrt{17}+\sqrt{26}+1\) và \(\sqrt{99}\) .
c) Chứng minh rằng: Số A = 11n+2 + 122n+1 chia hết cho 133, với mọi n thuộc N.
d) Chứng minh rằng với mọi n nguyên thì: 3n+2 - 2n+2 +3n - 2n chia hết cho 10.
2. Cho a,b,c là 3 số thực dương, thỏa mãn điều kiện: \(\frac{a+b-c}{c}=\frac{b+c-a}{b}=\frac{c+a-b}{c}\). Hãy tính giá trị của biểu thức: B= \(\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)
a. Chứng tỏ rằng tổng sau không m chia hết cho 10:
A = 405n + 2405 + m2 (m,n ϵ N ; n \(\ne\) 0 )
b. Tìm số tự nhiên n để các biểu thức sau là số tự nhiên
B = \(\frac{2n+2}{n+2}+\frac{5n+17}{n=2}-\frac{3n}{n+2}\)
Giúp mình với Mai và cả mọi người nhé
Chứng tỏ rằng \(\frac{12n+1}{30n+2}\) là phân số tối giản (n \(\in\) N)
Bài 1: Chứng tỏ các tổng sau không là số tự nhiên:
a. A= \(\frac{1}{2}\)+\(\frac{1}{3}\)+\(\frac{1}{4}\)
b. B= \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{8}\)
c. C= \(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
Bài 2: Chứng tỏ rằng:
a. A= \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{20}>\frac{1}{2}\)
b. B=\(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}>\frac{1}{2}\)
c. C= \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{100}>1\)
d. D=\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}>\frac{7}{12}\)
Bài 3: Cho S= \(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}.\)Chứng minh rằng \(\frac{3}{5}< S< \frac{4}{5}\)
Bài 4: Cho B= \(\frac{10n}{5n-3}\), tìm số nguyên n để:
a. B có giá trị nguyên b. B có GTLN
Tìm n\(\in\) N*, biết rằng:
\(\frac{1}{21}+\frac{1}{77}+\frac{1}{165}+.....+\frac{1}{n^2+4n}=\frac{56}{673}\)
nếu giải thích chi tiết mình cho 2 tick
1) Với n ϵ N* hãy chứng tỏ :
\(\frac{1}{n\left(n+1\right)\left(n+2\right)}\) = \(\frac{1}{2}.\) ( \(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
chứng tỏ rằng các phân số sau tối giản với mọi số tự nhiên n :
a) \(\frac{n+1}{2n+3}\)
b) \(\frac{2n+3}{4n+8}\)