vì 4n+6 \(⋮\)2 nhân với số nào cũng chia hết cho 2
=>\(\forall\)n\(_{\in}\)N (5n+7) x (4n+6)\(⋮\)2
n thuộc N
=>\(\left[\begin{array}{nghiempt}n=2k\\n=2k+1\end{array}\right.\left(k\in N\right)\)
+ n=2k
=> (5n + 7) x (4n + 6)=(5.2k+7).(4.2k+6)
=(10k+7).(8k+6)
mà 8k + 6 chia hết cho 2
=>(10k+ 7).(8k+6) chia hết cho 2
=> (5n + 7) x (4n + 6) chia hết cho 2
+ n=2k+1
=> (5n + 7) x (4n + 6)=[5.(2k+1)+7].[4.(2k+1)+6]
=(10k+5+7).(8k+4+6)
=(10k+12).(8k+10)
mà 8k+10 chia hết cho 2
=>(10k+12).(8k+10) chia hết cho 2
=> (5n + 7) x (4n + 6) chia hết cho 2
vậy....
~~~~~~~~~~~~~~~~~~
đây là cách dài dòng
bn thích làm theo thì làm
k thì lam theo cách của Bùi Bảo Châu cũng đc