Bài 9: Nghiệm của đa thức một biến

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đậu Thị Hiền Lương

Chứng tỏ rằng nếu đa thức \(F(x)=\)\(a_n.x^n+a_{n-1}.x^{n-1}+....+a_1.x^1+a_0.x^0\) có tổng hệ số của các hạng tử bậc chẵn bằng tổng các hạng tử bậc lẻ thì x=-1 là nghiệm của đa thức đó

Akai Haruma
2 tháng 7 2018 lúc 23:03

Lời giải:

Không mất tổng quát, giả sử n chẵn.

Khi đó các hệ số bậc chẵn là: \(a_n, a_{n-2},...,a_0\), và các hệ số bậc lẻ là \(a_{n-1}, a_{n-3},...,a_1\). Theo bài ra ta có:

\(a_n+a_{n-2}+...+a_0=a_{n-1}+a_{n-3}+...+a_1(*)\)

Ta thấy \((-1)^k=\left\{\begin{matrix} \text{1 nếu k chẵn}\\ \text{-1 nếu k lẻ}\end{matrix}\right.\). Do đó:

\(F(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0x^0\)

\(\Rightarrow F(-1)=a_n(-1)^n+a_{n-1}(-1)^{n-1}+...+a_1(-1)+a_0\)

\(=a_n+(-1)a_{n-1}+a_{n-2}+(-1)a_{n-3}+....+(-1)a_1+a_0\)

\(=(a_n+a_{n-2}+...+a_0)-(a_{n-1}+a_{n-3}+...+a_1)\)

\(=0\) (do $(*)$)

Vậy \(F(-1)=0\), tức là $x=-1$ là nghiệm của đa thức $F(x)$


Các câu hỏi tương tự
anh hoang
Xem chi tiết
Chauuu Anhhh
Xem chi tiết
Takami Akari
Xem chi tiết
Tống Minh Tùng
Xem chi tiết
Xem chi tiết
Xem chi tiết
cao Ngọc Huyền
Xem chi tiết
Đặng Trần Gia Bình
Xem chi tiết
Đặng Uyên Trang
Xem chi tiết