Ôn tập toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyễn thanh mai

Chứng tỏ rằng:

a, (2+2^3+ 2^3+...+2^100)chia hết cho 31

b,(1+3+3^2+3^3+...+3^11)chia hết cho 40

Edogawa Conan
17 tháng 3 2017 lúc 19:11

chắc bạn chép sai đầu bài ý a rồi , mình sửa lại nhé

Đặt A=\(2+2^2+2^3+...+2^{100}\)

Tổng A có :(100-1):1+1=100(số hạng)

=>A=\(2+2^2+2^3+...+2^{100}\)

A=\(\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

(có \(\dfrac{100}{5}=20\) nhóm , mỗi nhóm có 5 số hạng)

A=\(2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

A=\(2.31+2^6.31+...+2^{96}.31\)

A=\(31.\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)

Phương Trâm
18 tháng 3 2017 lúc 10:28

Sửa đề câu a tí nhé:

Chứng tỏ \(\left(2+2^2+2^3+...+2^{100}\right)\)chia hết cho 31

Giải:

Đặt \(S=\left(2+2^2+2^3+...+2^{100}\right)\)

\(=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)+...+\left(1+2+2^2+2^3+2^4\right).2^{96}\)

\(=2.31+2^6.31+...+2^{96}.31\)

\(=31.\left(2+2^6+...+2^{96}\right)\)

\(\Rightarrow S⋮31\)

Phương Trâm
18 tháng 3 2017 lúc 10:32

b.

Đặt \(A=\left(1+3+3^2+3^3+...+3^{11}\right)\)

\(A=\left(1+3+3^2+3^3+...+3^8.\left(1+3+3^2+3^3\right)\right)\)

\(A=40+...+3^8.40\)

\(A=40.\left(1+...+3^8\right)⋮40\)

Vậy \(A\) chia hết cho \(40\)


Các câu hỏi tương tự
Yến Nhi
Xem chi tiết
Yến Nhi
Xem chi tiết
Yến Nhi
Xem chi tiết
Yến Nhi
Xem chi tiết
Đặng Hoài An
Xem chi tiết
Hà Kiều Anh
Xem chi tiết
Nguyễn Minh Bảo Anh
Xem chi tiết
Lê Thị Mỹ Duyên
Xem chi tiết
Yến Nhi
Xem chi tiết