b)a2+b2+c2≥ab+bc+aca2+b2+c2≥ab+bc+ac
⇔2(a2+b2+c2)≥2(ab+bc+ac)⇔2(a2+b2+c2)≥2(ab+bc+ac)
⇔2a2+2b2+2c2−2ab−2bc−2ac≥0⇔2a2+2b2+2c2−2ab−2bc−2ac≥0
⇔(a2−2ab+b2)+(b2−2bc+c2)+(c2−2ac+a2)≥0⇔(a2−2ab+b2)+(b2−2bc+c2)+(c2−2ac+a2)≥0
⇔(a−b)2+(b−c)2+(c−a)2≥0⇔(a−b)2+(b−c)2+(c−a)2≥0 (luôn đúng)
Dấu ''='' xảy ra khi a=b=c