rút gọn: \(\dfrac{1-2sin^2x}{cos2x-sin2x}\)
Bài 1 chứng minh biểu thức sau ko phụ thuộc vào biến x
1/B=cos^2xcot^2x +3cos^2x - cot^2x + 2sin^2x
2/M=2cos^4x -sin^4x +sin^2xcos^2x +3sin^2x
Rút gọn các biểu thức sau
1, \(\dfrac{1+\cot x}{1-\cot x}-\dfrac{2+2\cot^2x}{\left(\tan x-1\right)\left(\tan^2x+1\right)}\)
2, \(\sqrt{\sin^4x+6\cos^2x+3\cos^4x}+\sqrt{\cos^4x+6\sin^2x+3\sin^4x}\)
Chứng minh
\(\frac{\left(1+tanx\right)^2-2tan^2x}{1+tan^2x}=sin2x+cos2x\)
chứng minh các đẳng thức sau
a) \(\tan^2x-\sin^2x=\tan^2x.\sin^2x\)
b) \(\tan x+\cot x=\frac{1}{\sin x.\cot x}\)
c) \(\frac{1-\cos x}{\sin x}=\frac{\sin x}{1+\cos x}\)
d) \(\frac{1}{1+\tan x}+\frac{1}{1+\cot x}=1\)
e) \(\left(1-\frac{1}{\cos x}\right)\left(1+\frac{1}{\cos x}\right)+\tan^2x=0\)
1. cos3a . sin a - sin3a . cos a =\(\frac{\sin4a}{4}\)
2. \(\frac{\cos^2x-\sin^2x}{\cot^2x-tan^2x}=\frac{1}{4}\sin^22x\)
3. \(\frac{\sin2x}{1+\cos2x}=tanx\)
4. rút gọn ; \(A=\frac{1+cosx+cos2x+cos3x}{2cos^2x+cosx-1}\)
chứng minh đẳng thức lượng giác sau không phụ thuộc vào x:\(\frac{tan^2x-cos^2x}{sin^2x}+\frac{cot^2x-sin^2x}{cos^2x}+\left(tanx-cotx\right)^2-\left(tanx+cotx\right)^2\)
Chứng minh biểu thức sau độc lập với x:
\(\frac{\tan ^2x-\cos ^2x}{\sin ^2x}+\frac{\cot ^2x-\sin ^2x}{\cos ^2x}\)
Cho cotx = -3
tính : A= \(\dfrac{2sin^2x+3sinx.cosx}{sin^2x-7}\)