\(\left(cot^2x-cos^2x\right)\left(tan^2x-sin^2x\right)=\left(\dfrac{cos^2x}{sin^2x}-cos^2x\right)\left(\dfrac{sin^2x}{cos^2x}-sin^2x\right)\)
\(=cos^2x\left(\dfrac{1}{sin^2x}-1\right)sin^2x\left(\dfrac{1}{cos^2x}-1\right)=\dfrac{cos^2x.sin^2x\left(1-sin^2x\right)\left(1-cos^2x\right)}{sin^2x.cos^2x}\)
\(=sin^2x.cos^2x\)