chứng minh rằng : cos\(^6\)x - sin\(^6\)x = \(\frac{1}{8}\)cos2x ( 7 + cos4x )
Rút gọn các biểu thức sau:
D = \(\frac{1+sin2x+cos2x}{1+sin2x-cos2x}\)E = \(\frac{sin2x+2sin3x+sin4x}{cos3x+2cos4x-cos5x}\)F = \(\frac{sinx+sin4x+sin7x}{cosx+cos4x+cos7x}\)G = \(\frac{cos2x-sin4x-cos6x}{cos2x+sin4x-cos6x}\)Đơn giản biểu thức:
1. A=Sinx.Cosx.Cos2x
2. B=Sin4x - Cos4x
3. C=Sinx.Cos2x.Cos4x.Cos8x.Cos16x
4. D=\(\dfrac{Cos4x-Tanx}{Cos2x}\)
5. E=sin4x-6sin2x.cos2x+cos4x
6. F=\(\dfrac{Sin2x}{Sinx}-\dfrac{Cos2x}{Cosx}\)
Chứng minh đẳng thức:
1 ,\(tan\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)+cot\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)=\dfrac{2}{cosx}\)
2 ,\(sin^8x-cos^8x=-\left(\dfrac{7}{8}cos2x+\dfrac{1}{8}cos6x\right)\)
3 ,\(3-4cos2x+cos4x=8sin^4x\)
4 ,\(sin\left(2x+\dfrac{\pi}{3}\right).cos\left(x-\dfrac{\pi}{6}\right)-cos\left(2x+\dfrac{\pi}{3}\right).cos\left(\dfrac{2\pi}{3}-x\right)=cosx\)
5 ,\(\sqrt{3}cos2x+sin2x+sin\left(4x-\dfrac{\pi}{3}\right)=4cos\left(2x-\dfrac{\pi}{6}\right).sin^2\left(x+\dfrac{\pi}{6}\right)\)
1. Rút gọn biểu thức \(P=cos^4x-sin^4x\)
\(A.P=cos2x\) \(B.P=\dfrac{3}{4}+\dfrac{1}{4}cos4x\) \(C.P=\dfrac{1}{4}+\dfrac{3}{4}cos4x\) \(D.P=\dfrac{3}{4}-\dfrac{1}{4}cos4x\)
2.Đơn giản biểu thức \(D=sin\left(\dfrac{5\pi}{2}-\alpha\right)+cos\left(13\pi+\alpha\right)-3sin\left(\alpha-5\pi\right)\)
\(A.3sina-2cosa\) \(B.3sina\) \(C.-3sina\) \(D.2cosa+3sina\)
Trắc nghiệm nhưng mong mn trình bày bài làm giúp em để tham khảo với ạ. Em cảm ơn
Cho cos2x=-\(\dfrac{4}{5}\), voi \(\dfrac{\pi}{4}< x< \dfrac{\pi}{2}\). Tinh sinx, cosx, sin(x+\(\dfrac{\pi}{3}\)), cos(2x-\(\dfrac{\pi}{4}\)).
chứng minh các đẳng thức sau : a) \(\frac{1+2sinxcosx}{sin^2x-cos^2x}\) = \(\frac{tan+1}{tan-1}\) ; b) sin4x - cos4x = 1 - 2cos2x ; c) sin4x + cos4x = \(\frac{3}{4}\) + \(\frac{1}{4}\)cosx ; d) sin6x + cos6x = \(\frac{5}{8}\) + \(\frac{3}{8}\)cos4x ; e) cotx - tanx = 2cot2x ; f) \(\frac{sin2x+sin4x+sin6x}{1+cos2x+cos4x}\) = 2sin2x
Chứng minh các đẳng thức:
\(cos^3xsinx-sin^3xcosx=\dfrac{1}{4}sin4x\)
\(sin^4x+cos^4x=\dfrac{1}{4}\left(3+cos4x\right)\)
Chứng minh:
tan2x + cot2x = \(\frac{6+2cos4x}{1-cos4x}\)