Cho x, y, z là ccs số thực thỏa mãn: \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=\frac{4}{x+y+z}\). Chứng minh rằng \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)
Help me!!
Cho ba phân thức:
\(\frac{x^2+y^2-z^2}{2xy},\frac{y^2+z^2-x^2}{2yz},\frac{z^2+x^2-y^2}{2zx}\) có tổng bằng 1 (x,y,z ≠0)
Chứng minh rằng trong ba phân thức đã cho có một phân thức bằng -1 và hai phân thức còn lại đều bằng 1
1.a, cho a,b,c và x,y,z là các số khác 0, thỏa mãn đk a+b+c=0, x+y+z=0,\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\). chứng minh rằng:
\(a^2x+b^2y+c^2z=0\)
b, cho a,b,c là các hằng số và a,b,c≠-1. chứng minh rằng nếu x=by+cz, y=ax+cz, z=ax+by, x+y+z≠0 thì\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\)
2. giả sử \(a_1,b_1,c_1,a_2,b_2,c_2\) là các số khác 0 thỏa mãn các đk: \(\frac{a_1}{a_2}+\frac{b_1}{b_2}+\frac{c_1}{c_2}=0\) và \(\frac{a_2}{a_1}+\frac{b_2}{b_1}+\frac{c_2}{c_1}=1\)
cmr \(\frac{a\frac{2}{2}}{a\frac{2}{1}}+\frac{b\frac{2}{2}}{b\frac{2}{1}}+\frac{c\frac{2}{2}}{c\frac{2}{1}}=1\)
3. a, biết x,y,z khác 0 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\). tính gt bt
M=\(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)
b, biết x,y,z khác 0 và x+y+z=\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\). cmr
y(\(x^2-yz\))\(\left(1-xz\right)=x\left(1-yz\right)\left(y^2-xz\right)\)
4. cho x,y,z khác 0 và \(\frac{y^2+z^2-x^2}{2yz}+\frac{z^2+x^2-y^2}{2xz}+\frac{x^2+y^2-z^2}{2xy}=1\)
chứng minh rằng trong 3 phân thức đã cho có 1 phân thức bằng -1 và hai phân thức còn lại đều bằng 1
Câu 1: Cho A=\(\frac{x-y}{x+y}\):B=\(\frac{y-z}{y+z}\);C=\(\frac{z-x}{z+x}\)
Chứng minh rằng (1+A)(1+B)(1+C)=(1-A)(1-B)(1-C)
Câu 2:Tìm giá trị nhỏ nhất của biểu thức sau:
A=\(x^2+2y^2-2xy+4x-2y+2021\)
Cho \(x\ne0\), \(y\ne0\), \(z\ne0\), \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}\) = 1 và x = y + z
Chứng minh rằng : \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\) = 1
Bài 1:
a) Cho x>y>0 và \(\frac{x^2+y^2}{xy}\)= \(\frac{10}{3}\). Tính giá trị của biểu thức M=\(\frac{x-y}{x+y}\)
b) Tìm giá trị nhỏ nhất của A= \(\frac{5x^2-x+1}{x^2}\), x≠0
Bài 2: Chứng minh rằng:
\(\frac{x-y}{1+xy}\)+\(\frac{y-z}{1+yz}+\frac{z-x}{1+zx}=\frac{x-y}{1+xy}\cdot\frac{y-z}{1+yz}\cdot\frac{z-x}{1+zx}\)
Bài 3: Tìm giá trị nhỏ nhất của biểu thức
a) P= x2+3x+3
b) Q= x2+2y2+2xy-2y
a) CMR: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right).\left(x+y+z\right)>=9\) với mọi x, y, z >0
b) Cho các số dương x, y, z thỏa mãn x + y + z <= 3
Chứng minh rằng: \(\frac{1}{x^2+y^2+z^2}+\frac{2009}{xy+yz+zx}>=670\)
thực hiện phép tính
a, \(\frac{x^2-yz}{1+\frac{y+x}{x}}+\frac{y^2-xz}{1+\frac{z+x}{y}}+\frac{z^2-xy}{1+\frac{x+y}{z}}\)
b, \(\left(1+\frac{y^2+z^2-x^2}{2yz}\right).\frac{1+\frac{x}{y+z}}{1-\frac{x}{y+z}}.\frac{y^2+z^2-\left(y-z\right)^2}{x+y+z}\)
c,\(\frac{2}{3}\left[\frac{1}{1+\frac{\left(2x+1\right)^2}{3}}+\frac{1}{1+\frac{\left(2x-1\right)^2}{3}}\right]\)
1. Giải phương trình: 3x2+y2+2x-2y=1
2. a) Tìm x,y,z thỏa mãn phương trình sau:
9x2+y2+2z2-18x+4z-6y+20=0
b) Cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1và\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
Chứng minh rằng: \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)