Ta có : \(x^2+2y^2+2xy+y+1\)
\(=\left(x^2+2xy+y^2\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=\left(x+y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x,y\)
Ta có : \(x^2+2y^2+2xy+y+1\)
\(=\left(x^2+2xy+y^2\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=\left(x+y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x,y\)
Chứng minh rằng :
\(\left(x^2-y^2\right)^2\ge4xy\left(x-y\right)^2;\forall x,y\)
Cho a, b, c là độ dài 3 cạnh của một tam giác. Sử dụng định lí về dấu của tam thức bậc hai, chứng minh rằng :
\(b^2x^2-\left(b^2+c^2-a^2\right)x+c^2>0,\forall x\)
Bài 1: Cho a,b dương sao cho a+b=1. Chứng minh rằng: \(\frac{a^2}{a+2b}+\frac{b^2}{a+2b}\ge\frac{1}{3}\)
bài 2: Cho x,y là các số thực dương thỏa mãn x+y=2019. tìm giá trị nhỏ nhất của biểu thức P= \(\frac{x}{\sqrt{2019-x}}+\frac{y}{\sqrt{2019-y}}\)
bài 3: Cho x>0, y>0 là những số thay đổi thỏa mãn \(\frac{2018}{x}+\frac{2019}{y}=1\). tìm giá trị nhỏ nhất của biểu thức P= x+y
Cho a, b, c là 3 số thực thỏa mãn điều kiện \(a^3>36\) và \(abc=1\)
Xét tam thức bậc hai : \(f\left(x\right)=x^2-ax-3bc+\dfrac{a^2}{3}\)
a) Chứng minh rằng \(f\left(x\right)>0;\forall x\)
b) Từ câu a) suy ra \(\dfrac{a^2}{3}+b^2+c^2>ab+bc+ca\)
Cho 2 số thực dương x, y. Chứng minh rằng \(\frac{1}{x}\) + \(\frac{1}{y}\) ≥ \(\frac{4}{x\:+\:y}\)
Mọi người giúp mình bài này với. Mình đang cần gấp
B1: Giải và biện luận pt
a) 2x+m-1/x+1>0
b) \(\sqrt{X-1}\)(x-m+2)>0
c) m(x-m)≤x-1
d) m^2+1≥m+(3m-2)
B2: Tìm m để bpt sau
a) (m-3)x^2+(m+2)x-4>0 vô nghiệm
b) (m+1)x-m+2>0 có nghiệm đúng ∀x≥0
c) x^2+2(m+1)x-m+3≥0 đúng với ∀x≥0
Cho 3 số thực dương x, y, z. Chứng minh rằng
\(\frac{1}{x^3+y^3+xyz}+\frac{1}{y^3+z^3+xyz}+\frac{1}{x^3+z^3+xyz}\le\frac{1}{xyz}\)