Trường hợp 1: ΔABC không cân
=>AM>AH(ΔAHM vuông tại H)
Trường hợp 2: ΔABC cân tại A
=>M trùng với H
=>AM=AH
Do đó: AM>=AH
Trường hợp 1: ΔABC không cân
=>AM>AH(ΔAHM vuông tại H)
Trường hợp 2: ΔABC cân tại A
=>M trùng với H
=>AM=AH
Do đó: AM>=AH
Cho tam giác ABC :
a) Qua trung điểm D của cạnh BC, kẻ đường thẳng song song với AB, nó cắt cạnh AC tại E. Qua E, kẻ đường thẳng song song với BC, nó cắt AB tại F. Chứng minh \(\Delta CDE=\Delta EFA\). Từ đó suy ra E là trung điểm của cạnh AC ?
b) Chứng minh rằng đường thẳng đi qua các trung điểm hai cạnh của một tam giác thì song song với cạnh thứ ba của tam giác đó ?
c) Chứng minh rằng tâm đường tròn ngoại tiếp tam giác ABC là trực tâm của tam giác có ba đỉnh là trung điểm ba cạnh của tam giác ABC ?
Những tam giác nào có ít nhất một đường trung tuyến đồng thời là đường phân giác, đường trung trực, đường cao ?
Dựng các hình vuông ABDE và ACFG bên ngoài tam giác nhọn ABC cho trước.
a) Gọi H là điểm thuộc đường thẳng BC sao cho \(AH\perp BC\). Gọi I, J là các điểm thuộc đường thẳng AH sao cho \(EI\perp AH\) và \(GJ\perp AH\). Chứng minh :
\(\Delta ABH=\Delta EAI,\Delta ACH=\Delta GAJ\)
Từ đó suy ra đường thẳng AH cắt EG tại trung điểm K của EG (tức là AK là trung tuyến của tam giác AEG)
b) Gọi L là điểm thuộc đường thẳng AK sao cho K là trung điểm của AL. Chứng minh AL = BC
c) Chứng minh \(\Delta ABL=\Delta BDC\). Từ đó suy ra CD là một đường cao của tam giác BCL
d) Chứng minh rằng các đường thẳng AH, BF, CD đồng quy ?
cho tam giác DEF vuông tại D với đường trung tuyến DI
a) tam giác DEI= tam giác DFI
b) chứng minh ID là đường trung trực của EF
C) kẻ đường trung tuyến EN. CMR: IN // ED
giúp mik với
chiều nộp ròi
trước 1h30
Cho tam giác MNP với đường trung tuyến MR và trọng tâm Q
a) Tính tỉ số các diện tích của hai tam giác MPQ và RPQ
b) Tính tỉ số các diện tích của hai tam giác MNQ và RNQ
c) So sánh các diện tích của hai tam giác RPQ và RNQ
Từ các kết quả trên, hãy chứng minh các tam giác QMN, QNP, QPM có cùng diện tích
Gợi ý : Hai tam giác ở mỗi câu a, b, c có chung đường cao
Cho tam giác ABC có hai đường trung tuyến AD, BE vuông góc với nhau. Chứng minh rằng BC < 2AC ?
Cho tam giác ABC vuông tại A có AB < AC , trung tuyến AM . Trên tia đối của tia MA lấy điểm I sao cho M là trung điểm của AD .
a ) Chứng minh tam giác ABM = tam giác DCM và AB // CD . b ) Chứng minh AD = BC và AM = 1 / 2BC .
c ) Kẻ đường cao AH của tam giác ABC ( H thuộc BC ) . Trên tia AH lấy điểm K sao cho AH = HK . C / m : BH =CK .
Hãy ghép đôi hai ý ở hai cột để được khẳng định đúng:
Trong tam giác ABC
a) đường phân giác xuất phát từ đỉnh A a') là đường thẳng vuông góc với cạnh BC tại trung điểm của nó
b) đường trung trực ứng với cạnh BC b') là đoạn vuông góc kẻ từ A đến đường thẳng BC
c) đường cao xuất phát từ đỉnh A c') là đoạn thẳng nối A với trung điểm của cạnh BC
d) đường trung tuyến xuất phát từ đỉnh A d') là đoạn thẳng có hai mút là đỉnh A và giao điểm của cạnh BC với tia phân giác của góc A
Cho tam giác ABC cân tại A có trung tuyến AM qua B kẻ đường thẳng song song với AC cắt đường thẳng AB tại D
a chứng minh tam giác ABC bằng tam giác DMB
b Chứng minh AB = BD
C Gọi I là trung điểm của AB đoạn thẳng PD cắt đường thẳng bc tại O Trên tia đối của tia PO lấy điểm N sao cho BN = PO .Chứng minh O là trọng tamm của tam giác ABB và NA=20M