Chứng minh phương trình \(a.\left(x-a^2+1\right)=a^2+2-2x\) luôn có nghiêm dương với mọi tham số a khác 2
Cho PT: \(x^3+2ax^2-\left(a+1\right)^2x-2a.\left(a+1\right)^2=0\) ( a là hằng).
a) Giải và biện luận phương trình.
b) Với -1<a<1 nghiệm nào là nghiệm nhỏ nhất của phương trình
Chứng minh rằng với mọi số nguyên a , tổng \(\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2+...+\left(a+99\right)^2\) không thể viết được thành dạng lũy thừa lớn hơn 1 của một số nguyên dương
Bài 1: a, chứng minh rằng nếu P(x) chia hết cho (x - a) với a là hằng số thì P(x) có 1 nghiệm là x = a
b, chứng minh rằng nếu P(x) chia hết cho (x - a) với a là hằng số thì P(x) có 1 nghiệm là x = a
Bài 2: K thực hiện phép chia, hãy xác đinh xem đa thức dư ở trong mỗi phép chia là bao nhiêu
a, \(\left(x^3+2x^2-3x+9\right)⋮\left(x+3\right)\)
b, \(\left(9x^4-6x^3+15x^2+2x-1\right)⋮\left(3x^2-2x+5\right)\)
1.Cho \(a,b,c,d\) là các số nguyên thỏa mãn \(a^3+b^3=2\left(c^3-d^3\right)\) . Chứng minh rằng a+b+c+d chia hết cho 3
2.Cho ba số dương a,b,c thỏa mãn abc=1. Chứng minh rằng \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
Chứng minh rằng với mọi a, b, c dương ta có;
\(\Sigma_{cyc}\frac{a\left(b+c\right)}{\left(b+c\right)^2+a^2}\le\frac{6}{5}\)
Cho phân thức \(P=\frac{\left(x^2+a\right)\left(1+a\right)+a^2x^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\)
a.Rút gọn P
b. Chứng minh phân thức trên không phụ thuộc vào x , có nghĩa với mọi x và a
Bài 1 : Cho 2 số thực a , b thỏa mãn a + b = 5 và ab = 6 . Hãy tính giá trị của các biểu thức sau : \(a^2+b^2\) ; \(a^3+b^3\); \(a^4+b^4\) ; \(a^5+b^5\) ; \(a^6+b^6\)
Bài 2 :
a) Chứng minh rằng : \(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\) với mọi số thực a , b
b) Cho hằng đẳng thức \(2a^2-5ab+2b^2=x\left(a+b\right)^2+y\left(a-b\right)^2\)
c) Chứng minh rằng \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
d) Chứng minh rằng \(\left(ax+by\right)^2+\left(ay-bx\right)^2=\left(a^2+b^2\right)\left(x^2+y^2\right)\) với mọi số thực a , b , x , y
Chứng minh rằng vợi mọi a, b, c là các số thực dương thì \(\left(\frac{a+b}{2}\right)^3+\left(\frac{b+c}{2}\right)^3+\left(\frac{c+a}{2}\right)^3\le a^3+b^3+c^3\)