gọi I là tâm của đường nội tiếp tam giác ABC : ta có
SABC = SAIB + SBIC + SCIA
= \(\dfrac{AB.r}{2}+\dfrac{BC.r}{2}+\dfrac{CA.r}{2}\) = \(\left(\dfrac{AB}{2}+\dfrac{BC}{2}+\dfrac{CA}{2}\right).r\)
= \(\dfrac{chuvitamgiácABC}{2}.r\) = p.r (đpcm)
gọi I là tâm của đường nội tiếp tam giác ABC : ta có
SABC = SAIB + SBIC + SCIA
= \(\dfrac{AB.r}{2}+\dfrac{BC.r}{2}+\dfrac{CA.r}{2}\) = \(\left(\dfrac{AB}{2}+\dfrac{BC}{2}+\dfrac{CA}{2}\right).r\)
= \(\dfrac{chuvitamgiácABC}{2}.r\) = p.r (đpcm)
Chứng minh rằng: Nếu tam giác ABC có chu vi = 2p, bán kính đường tròn nội tiếp tam giác là r thì diện tích tam giác đc tính theo công thức S = p.r
Cho tam giác ABC vuông tại A. Gọi R là bán kính của đường tròn ngoại tiếp, r là bán kính của đường tròn nội tiếp tam giác ABC. Chứng minh rằng :
\(AB+AC=2\left(R+r\right)\)
Cho tam giác ABC vuông ở A R,r : Bán kính của đường kính ngoại tiếp ,nội tiếp tam giác ABC CMR: câu a r=1/2(AB+AC-BC) câu b AB+AC=2(R+r)
Cho tam giác ABC vuông ở A R,r : Bán kính của đường kính ngoại tiếp ,nội tiếp tam giác ABC CMR: câu a r=1/2(AB+AC-BC) câu b AB+AC=2(R+r)
Cho tam giác ABC vuông tại A. Đường tròn (O) nội tiếp tam giác ABC tiếp xúc với AB, AC lần lượt tại D, E
a) Tứ giác ADOE là hình gì ? Vì sao ?
b) Tính bán kính của đường tròn (O) biết AB = 3cm, AC = 4cm ?
Cho tam giác nhọn ABC có AB < AC và đường cao AH. Gọi D và E lần lượt là trung điểm AB và AC.
a) Chứng minh rằng DE là tiếp tuyến chung của hai đường tròn ngoại tiếp hai tam giác DHB và ECH.
b) Gọi F là giao điểm thứ hai của hai đường tròn ngoại tiếp hai tam giác DHB và ECH. Chứng minh rằng HF đi qua trung điểm của DE.
c) đường tròn ngoại tiếp hai tam giác ADE đi qua F.
Giúp em với
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A; AH). Kẻ các tiếp tuyến BD, CE với đường tròn (D, E là các tiếp điểm khác H). Chứng minh rằng :
a) Ba điểm D, A, E thẳng hàng
b) DE tiếp xúc với đường tròn có đường kính BC
Tính diện tích tam giác đều ABC ngoại tiếp đường tròn (I; r) ?
Cho tam giác ABC vuông tại A. Đường tròn nội tiếp tam giác ABC tiếp xúc với BC tại D. Chứng minh rằng :
\(S_{ABC}=BD.DC\)