Cho tam giác ABC vuông tại A. Đường tròn (O) nội tiếp tam giác ABC tiếp xúc với AB, AC lần lượt tại D, E
a) Tứ giác ADOE là hình gì ? Vì sao ?
b) Tính bán kính của đường tròn (O) biết AB = 3cm, AC = 4cm ?
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A; AH). Kẻ các tiếp tuyến BD, CE với đường tròn (D, E là các tiếp điểm khác H). Chứng minh rằng :
a) Ba điểm D, A, E thẳng hàng
b) DE tiếp xúc với đường tròn có đường kính BC
Cho tam giác ABC vuông tại A. Gọi R là bán kính của đường tròn ngoại tiếp, r là bán kính của đường tròn nội tiếp tam giác ABC. Chứng minh rằng :
\(AB+AC=2\left(R+r\right)\)
Cho ( O, R ) đường kính AB . Lấy điểm C nằm trên đường tròn , tiếp tuyến tại C cắt tiếp tuyến tại B ở D và E . Chứng minh
a) OE vuông góc với BC và tam giác ABC
b) DE = AD + BE
c) DÔE = 90 độ
d) BE.AD=R mũ 2
Cho tam giác ABC có AB = 5cm, AC = 7cm, BC = 6cm ngoại tiếp đường tròn (O). Đường tròn (O1) bằng tiếp góc A tiếp xúc với cạnh BC ở D, tiếp xúc với phần kéo dài của các cạnh AB, AC lần lượt ở E và F.
a) Chứng minh ba điểm A, O, O1, thẳng hàng
b) Tính độ dài các đoạn AE, AF. BE, CF
Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm)
a) Chứng minh rằng OA vuông góc với BC
b) Vẽ đường kính CD. Chứng minh rằng BD song song với AO
c) Tính độ dài các cạnh của tam giác ABC; Biết OB = 2cm, OA = 4cm
Cho đường tròn (O;R) và điểm A sao cho OA = 2R. Vẽ các tiếp tuyến AB, AC với (O) (B,C la tiếp điểm) a) Chứng minh ABC đều b) Đường vuông góc với OB tại O cắt AC tại D. Đường vuông góc với OC tại O cắt AB tại E. Chứng minh tứ giác ADOE là hình thoi c) Chứng minh DE là tiếp điểm của đường tròn (O)
Cho tam giác ABC đều, hai đường cao BD và CE cắt nhau ở H, AH cắt BC tại M
a) chứng minh 4 điểm A,D,H,E cùng thuộc một đường tròn
b) chứng minh MD là tiếp tuyến của đường tròn đi qua bốn điểm A,D,H,E
Cho tam giác ABC vuông ở A R,r : Bán kính của đường kính ngoại tiếp ,nội tiếp tam giác ABC CMR: câu a r=1/2(AB+AC-BC) câu b AB+AC=2(R+r)