Chứng minh rằng nếu phải p và q là 2 số nguyên tố thoả mãn
p2-q2=p-3p+2 thì p2+q2 cũng là số nguyên tố
Chứng minh rằng hiệu các bình phương của 2 số lẻ bất kỳ thì chia hết cho 8
1) Tìm số nguyên tố p sao cho \(2^{p+1}⋮p\)
2) Cho 2 số nguyên tố khác nhau p,q. Chứng minh rằng \(p^{a-1}+q^{p-1}⋮p.q\)
1) Cho a là số nguyên ; m,n là số tự nhiên . Chứng minh rằng \(â^{6m}+a^{6n}⋮7\Leftrightarrow a⋮7\)
2) Cho p là số tự nhiên > 7. Chứng minh rằng \(3^p-2^p-1⋮42p\)
Số tự nhiên A=\(1+2^{3^{2012}}\) là số nguyên tố hay hợp số
Cho 2 số nguyên a,b thỏa mãn \(a^2+b^2+1=2\left(ab+a+b\right)\) . CM : a và b là 2 số chính phương liên tiếp
\(^{x^3}\) = 2\(p\)+1, trong đó \(x\) là số tự nhiên, \(p\) là số nguyên tố. Tìm \(x\).
Cho x, y là các số nguyên thỏa mãn: x^2 -2y= xy. Tìm GTLN của Q= x-y/x+y
Bài 3 : Tính giá trị của biểu thức .
M*N với x=-2 . Biết rằng : M=-2x^2+3x+5 ; N=x^2-x+3 .
Bài 4 : Tính giá trị của đa thức , biết x=y+5 .
a ) x*(x+2)+y*(y-2)-2xy+65
b ) x^2+y*(y+2x)+75
Bài 5 : Cho biểu thức : M= (x-a)*(x-b)+(x-b)*(x-c)+(x-c)*(x-a)+x^2 . Tính M theo a , b , c biết rằng x=1/2a+1/2b+1/2c .
Bài 6 : Cho các biểu thức : A=15x-23y ; B=2x+3y . Chứng minh rằng nếu x, y là các số nguyên và A chia hết cho 13 thì B chia hết cho 13 . . Ngược lại nếu B chia hết 13 thì A cũng chia hết cho 13 .
Bài 7 : Cho các biểu thức : A=5x+2y ; B=9x+7y
a . rút gọn biểu thức 7A-2B .
b . Chứng minh rằng : Nếu các số nguyên x , y thỏa mãn 5x+2y chia hết cho 17 thì 9x+7y cũng chia hết cho 17 .
Tìm số tự nhiên n để \(n^3-n^2-7n+1\) là số nguyên tố lớn nhất