Ta có :
\(a^2+b^2⋮3\)
=> \(a.a+b.b⋮3\)
=> \(a+b⋮3\)
=> \(a,b⋮3\)
Ta có :
\(a^2+b^2⋮3\)
=> \(a.a+b.b⋮3\)
=> \(a+b⋮3\)
=> \(a,b⋮3\)
Cho hai số nguyên \(a;b\) thỏa mãn điều kiện \(a^2+b^2\) chia hết cho 7.
Chứng minh rằng \(a;b\) đều chia hết cho 7.
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán gợi ý, giúp đỡ em với ạ!
Em cám ơn nhiều ạ!
Cho ba số nguyên \(a;b;c\) thỏa mãn \(a^6+b^6+c^6\) chia hết cho 28. Chứng minh rằng \(a.b.c\) chia hết cho 2744.
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán, gợi ý giúp đỡ em tham khảo với ạ!
Em cám ơn nhiều lắm ạ!
Cho ba số nguyên \(a;b;c\) thỏa mãn \(a^6+b^6+c^6\) chia hết cho 28. Chứng minh rằng \(a.b.c\) chia hết cho 2744.
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán gợi ý , giúp đỡ em tham khảo với ạ!
Em cám ơn nhiều lắm ạ!
Cho hai số nguyên dương \(a;b\) thỏa mãn điều kiện \(2a+5b\) và \(2b+5a\) đều là số chính phương . Chứng minh rằng cả hai số \(a;b\) cùng chia hết cho 7.
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán giúp đỡ em với ạ!
Em cám ơn nhiều lắm ạ!
Cho x, y là hai số nguyên dương và x + 5, y + 2015 đều chia hết cho 6. Chứng minh rằng 4x+y + x + y cùng chia hết cho 6
Cho a, b là các số nguyên. Chứng minh rằng
a) chia hết cho a-b với mọi số tự nhiên n.
b) chia hết cho a+b với mọi số tự nhiên n lẻ.
Chứng minh rằng với mọi số nguyên dương \(n\) thì số \(A=59^n-17^n-9^n+2^n\) chia hết cho 35.
P/s: Em xin phép nhờ sự giúp đỡ của quý thầy cô giáo và các bạn yêu toán với ạ!
Em cám ơn nhiều lắm ạ!
Cho 2 đa thức \(P\left(x\right);Q\left(x\right)\) thỏa mãn \(P\left(x^3\right)+x.Q\left(x^3\right)\) chia hết cho \(x^2+x+1\). Chứng minh rằng đa thức \(P\left(x\right)\) chia hết cho đa thức \(x-1\).
P/s: Em xin phép nhờ quý thầy cô giáo cùng các bạn yêu toán giúp đỡ em tham khảo với ạ.
Em cám ơn nhiều ạ!
Cho 2 số nguyên \(x;y>1\) thỏa mãn điều kiện \(2x^2-1=y^3\). Chứng minh rằng x chia hết cho 3.
P/s: Em xin phép nhờ sự giúp đỡ của quý thầy cô giáo và các bạn yêu toán, em cám ơn nhiều lắm ạ!