Đặt b+c=x;c+a=y;a+b=z
Áp dụng BĐT \(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\), ta được
\(2\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{1}{a+b}\right)\ge9\)
\(\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{1}{a+b}\right)\ge4,5\)
\(\)\(\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{a+c}+\dfrac{a+b+c}{a+b}\ge4,5\)
\(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}+1+1+1\ge4,5\)
\(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\ge1,5\)
Đẳng thức xảy ra khi và chỉ khi a=b=c