Lời giải:
Nếu $a,b,c$ lập thành csc thì $b=a+m, c=a+2m$ với $m$ là công sai.
Khi đó:
$3(a^2+b^2+c^2)-6(a-b)^2=3[a^2+(a+m)^2+(a+2m)^2]-6(a-a-m)^2$
$=3(a^2+a^2+m^2+2am+a^2+4m^2+4am)-6m^2$
$=3(3a^2+5m^2+6am)=9a^2+15m^2+18am-6m^2$
$=9a^2+9m^2+18am$
$=9(a^2+m^2+2am)=9(a+m)^2=(3a+3m)^2$
$=(a+a+m+a+2m)^2=(a+b+c)^2$ (đpcm).