CMR với mọi số tự nhiên \(n\ge1\):
a ) \(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{2}\)
b ) \(\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{\left(2n+1\right)^2}< \frac{1}{4}.\)
Tính :
a) \(\frac{\left(\frac{-5}{7}\right)^n}{\left(\frac{-5}{7}\right)^{n-1}}\)( n\(\ge\)1 )
b) \(\frac{\frac{-1}{2}^{2n}}{\left(\frac{-1}{2}\right)^n}\) ( n \(\in\)N )
Chứng minh rằng tổng
\(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{n}\left(n\varepsilon N\right)\)
không thể là một số nguyên
Với mọi số tự nhiên n \(\ge\) 2 . Hãy so sánh
A= \(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}với\frac{1}{2}\)
a) Chứng tỏ rằng với số tưh nhiên n > 0 ta có:
\(1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}=\frac{\left(n^2+n+1\right)^2}{n^2\left(n+1\right)^2}\)
b) Áp dụng kết quả trên hãy tính giá trị của biểu thức:
\(S=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2010^2}+\frac{1}{2011^2}}\)
Cho mọi số tự nhiên n\(\ge\)2
A=\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\) với \(\frac{1}{2}\)
Trình bayd rõ ràng
chứng minh rằng : s= \(\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-......+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+....+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}< 0,2\)
chứng minh rằng:
\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}< 2\)
mình ngu toán chúng minh (hép mi)