Đặt \(A=\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{4n-2}}-\dfrac{1}{7^{4n}}+...+\dfrac{1}{7^{98}}+\dfrac{1}{7^{100}}\)
Ta có:
\(\dfrac{A}{7^2}=\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}+\dfrac{1}{7^{102}}\)
\(\Rightarrow A+\dfrac{A}{7^2}=\left(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{98}}+\dfrac{1}{7^{100}}\right)+\left(\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}+\dfrac{1}{7^{102}}\right)\)
\(\Rightarrow\dfrac{50A}{49}=\dfrac{1}{7^2}-\dfrac{1}{7^{102}}< \dfrac{1}{7^2}=\dfrac{1}{49}\)
\(\Rightarrow A< \dfrac{1}{50}\)
=> ĐPCM.