Chương I : Số hữu tỉ. Số thực

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trịnh Thị Thảo Nhi

Chứng minh rằng:

\(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{4n-2}}-\dfrac{1}{7^{4n}}+...+\dfrac{1}{7^{98}}+\dfrac{1}{7^{100}}< \dfrac{1}{50}\)

Linh Trần
27 tháng 11 2017 lúc 21:59

Đặt \(A=\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{4n-2}}-\dfrac{1}{7^{4n}}+...+\dfrac{1}{7^{98}}+\dfrac{1}{7^{100}}\)

Ta có:

\(\dfrac{A}{7^2}=\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}+\dfrac{1}{7^{102}}\)

\(\Rightarrow A+\dfrac{A}{7^2}=\left(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{98}}+\dfrac{1}{7^{100}}\right)+\left(\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}+\dfrac{1}{7^{102}}\right)\)

\(\Rightarrow\dfrac{50A}{49}=\dfrac{1}{7^2}-\dfrac{1}{7^{102}}< \dfrac{1}{7^2}=\dfrac{1}{49}\)

\(\Rightarrow A< \dfrac{1}{50}\)

=> ĐPCM.


Các câu hỏi tương tự
Trần Bảo Hân
Xem chi tiết
Ngô Thành Chung
Xem chi tiết
Như Phương Trần
Xem chi tiết
Hoàng Giang
Xem chi tiết
Nguyễn An Vy
Xem chi tiết
Ái Ngân
Xem chi tiết
Nguyễn An Vy
Xem chi tiết
Quỳnh Như
Xem chi tiết
Trịnh Đức Thịnh
Xem chi tiết