\(3x^2y^4\)-\(5xy^3\)-\(\dfrac{3}{2}x^2y^4\)+\(3xy^3\)+\(2xy^3\)+1=1,5\(x^2y^4\)+1>0
3x2 y4 - 5xy3 -3/2 x2y4 + 3xy3 + 2xy3 +1
=\(\dfrac{3}{2}x^2y^4+1\)
Ta có:x2\(\ge0\forall x\in Q\)
y4\(\ge0\forall x\in Q\)
\(\Rightarrow x^2y^4\)\(\ge0\forall x\in Q\)
\(\Rightarrow\dfrac{3}{2}\)\(x^2y^4\) \(\ge0\forall x\in Q\)
\(\Rightarrow\dfrac{3}{2}\)\(x^2y^4\) \(\ge1\forall x\in Q\) (đpcm)